A Radon-Nikodym theorem for Frechet measures

被引:1
|
作者
Bowers, Adam [1 ]
机构
[1] Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA
关键词
Multidimensional measure theory; Bimeasures; Extended Haagerup tensor product; POLYMEASURES; ALGEBRAS;
D O I
10.1016/j.jmaa.2013.10.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We apply results in operator space theory to the setting of multidimensional measure theory. Using the extended Haagerup tensor product of Effros and Ruan, we derive a Radon-Nikodym theorem for bimeasures and then extend the result to general Frechet measures (scalar-valued polymeasures). We also prove a measure-theoretic Grothendieck inequality, provide a characterization of the injective tensor product of two spaces of Lebesgue integrable functions, and discuss the possibility of a bounded convergence theorem for Frechet measures. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:592 / 606
页数:15
相关论文
共 50 条