共 50 条
A numerical study of the small dispersion limit of the Korteweg-de Vries equation and asymptotic solutions
被引:25
|作者:
Grava, T.
[2
]
Klein, C.
[1
]
机构:
[1] Univ Bourgogne, Inst Math Bourgogne, F-21078 Dijon, France
[2] SISSA, I-34136 Trieste, Italy
基金:
欧洲研究理事会;
关键词:
Korteweg-de Vries equation;
Dispersive shocks;
Multi-scale analysis;
Numerical methods;
DOUBLE SCALING LIMIT;
ORTHOGONAL POLYNOMIALS;
MULTISCALE EXPANSION;
DEVRIES EQUATION;
CAMASSA-HOLM;
UNIVERSALITY;
EIGENVALUES;
RESPECT;
SYSTEMS;
ZONE;
D O I:
10.1016/j.physd.2012.04.001
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
We study numerically the small dispersion limit for the Korteweg-de Vries (KdV) equation u(t) + 6uu(x) + epsilon(2)u(xxx) = 0 for epsilon << 1 and give a quantitative comparison of the numerical solution with various asymptotic formulae for small epsilon in the whole (x, t)-plane. The matching of the asymptotic solutions is studied numerically. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:2246 / 2264
页数:19
相关论文