Local ergodicity for systems with growth properties including multi-dimensional dispersing billiards

被引:4
|
作者
Bachurin, Pavel [1 ]
Balint, Peter [2 ,3 ]
Toth, Imre Peter [4 ,5 ]
机构
[1] Univ Toronto, Dept Math, Toronto, ON M5S 2E4, Canada
[2] Tech Univ Budapest, Inst Math, H-1111 Budapest, Hungary
[3] NYU, Courant Inst Math Sci, New York, NY 10012 USA
[4] Hungarian Acad Sci, Alfred Renyi Inst, H-1053 Budapest, Hungary
[5] Tech Univ Budapest, Res Grp Stochast, H-1521 Budapest, Hungary
关键词
D O I
10.1007/s11856-008-1045-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove local ergodicity of uniformly hyperbolic discrete time dynamical systems with singularities, which satisfy certain regularity conditions and an assumption on the growth of unstable manifolds. We apply the result to prove ergodicity of a class of multi-dimensional dispersing billiards.
引用
收藏
页码:155 / 175
页数:21
相关论文
共 50 条
  • [1] Local ergodicity for systems with growth properties including multi-dimensional dispersing billiards
    Pavel Bachurin
    Péter Bálint
    Imre Péter Tóth
    Israel Journal of Mathematics, 2008, 167
  • [2] Geometry of multi-dimensional dispersing billiards
    Bálint, P
    Chernov, N
    Szász, D
    Tóth, IP
    ASTERISQUE, 2003, (286) : 119 - 150
  • [3] Exponential Decay of Correlations in Multi-Dimensional Dispersing Billiards
    Péter Bálint
    Imre Péter Tóth
    Annales Henri Poincaré, 2008, 9 : 1309 - 1369
  • [4] Exponential Decay of Correlations in Multi-Dimensional Dispersing Billiards
    Balint, Peter
    Toth, Imre Peter
    ANNALES HENRI POINCARE, 2008, 9 (07): : 1309 - 1369
  • [5] Multi-dimensional semi-dispersing billiards:: Singularities and the fundamental theorem
    Bálint, P
    Chernov, N
    Szász, D
    Tóth, IP
    ANNALES HENRI POINCARE, 2002, 3 (03): : 451 - 482
  • [6] Multi-Dimensional Semi-Dispersing Billiards: Singularities and the Fundamental Theorem
    P. Bálint
    N. Chernov
    D. Szász
    I. P. Tóth
    Annales Henri Poincaré, 2002, 3 : 451 - 482
  • [7] Hyperbolicity in multi-dimensional Hamiltonian systems with applications to soft billiards
    Bálint, P
    Tóth, IP
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2006, 15 (01) : 37 - 59
  • [8] Approximating multi-dimensional hamiltonian flows by billiards
    Rapoport, A.
    Rom-Kedar, V.
    Turaev, D.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 272 (03) : 567 - 600
  • [9] Approximating Multi-Dimensional Hamiltonian Flows by Billiards
    A. Rapoport
    V. Rom-Kedar
    D. Turaev
    Communications in Mathematical Physics, 2007, 272 : 567 - 600
  • [10] Example for exponential growth of complexity in a finite horizon multi-dimensional dispersing billiard
    Balint, Peter
    Toth, Imre Peter
    NONLINEARITY, 2012, 25 (05) : 1275 - 1297