L-Diversity Algorithm for Incremental Data Release

被引:5
|
作者
Wang, Pingshui [1 ]
Wang, Jiandong [2 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Comp Sci & Technol, Nanjing 210016, Peoples R China
[2] Anhui Univ Finance & Econ, Dept Comp Sci & Technol, Bengbu 233030, Peoples R China
来源
关键词
Data release; privacy preservation; anonymization; k-anonymity; l-diversity; K-ANONYMITY; ANONYMIZATION;
D O I
10.12785/amis/070546
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
At present most privacy preserving algorithms based on l-diversity model are limited only to static data release. It is low efficiency and vulnerable to inference attack if these anonymous algorithms are directly applied to dynamic data publishing. To address this issue, this paper analyzes various inference channels that possibly exist between multiple anonymized datasets and discusses how to avoid such inferences and provides an effective approach to securely anonymize a dynamic dataset based on incremental clustering: incremental l-diversity algorithm. Theory analysis and experiment results show that the proposed method is effective and efficient.
引用
收藏
页码:2055 / 2060
页数:6
相关论文
共 50 条
  • [1] An Improved l-Diversity Anonymisation Algorithm
    Tripathy, B. K.
    Kumaran, K.
    Panda, G. K.
    COMPUTER NETWORKS AND INTELLIGENT COMPUTING, 2011, 157 : 81 - 86
  • [2] Sensor Data Anonymization Based on Genetic Algorithm Clustering with L-Diversity
    Abdrashitov, Ainur
    Spivak, Anton
    2016 18TH CONFERENCE OF OPEN INNOVATIONS ASSOCIATION AND SEMINAR ON INFORMATION SECURITY AND PROTECTION OF INFORMATION TECHNOLOGY (FRUCT-ISPIT), 2016, : 3 - 8
  • [3] Extending l-Diversity for Better Data Anonymization
    Tian, Hongwei
    Zhang, Weining
    PROCEEDINGS OF THE 2009 SIXTH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY: NEW GENERATIONS, VOLS 1-3, 2009, : 461 - 466
  • [4] BSGI: An effective algorithm towards stronger l-diversity
    Ye, Yang
    Deng, Qiao
    Wang, Chi
    Lv, Dapeng
    Liu, Yu
    Feng, Jianhua
    DATABASE AND EXPERT SYSTEMS APPLICATIONS, PROCEEDINGS, 2008, 5181 : 19 - +
  • [5] An improved V-MDAV algorithm for l-diversity
    Han Jian-min
    Cen Ting-ting
    Yu Hui-qun
    2008 INTERNATIONAL SYMPOSIUM ON INFORMATION PROCESSING AND 2008 INTERNATIONAL PACIFIC WORKSHOP ON WEB MINING AND WEB-BASED APPLICATION, 2008, : 733 - +
  • [6] An l-MDAV Microaggregation Algorithm for Sensitive Attribute l-Diversity
    Han Jianmin
    Cen Tingting
    Yu Juan
    PROCEEDINGS OF THE 27TH CHINESE CONTROL CONFERENCE, VOL 5, 2008, : 713 - 718
  • [7] Algorithm to satisfy l-diversity by combining dummy records and grouping
    Oishi, Keiichiro
    Sei, Yuichi
    Andrew, J.
    Tahara, Yasuyuki
    Ohsuga, Akihiko
    SECURITY AND PRIVACY, 2024, 7 (03)
  • [8] Effective L-Diversity Anonymization Algorithm Based on Improved Clustering
    Zheng, Wantong
    Ma, Yong
    Wang, Zhongyue
    Jia, Chunfu
    Li, Peng
    CYBERSPACE SAFETY AND SECURITY, PT II, 2019, 11983 : 318 - 329
  • [9] On the Complexity of the l-diversity Problem
    Dondi, Riccardo
    Mauri, Giancarlo
    Zoppis, Italo
    MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE 2011, 2011, 6907 : 266 - 277
  • [10] Distributed L-diversity using spark-based algorithm for large resource description frameworks data
    Jeon, MinHyuk
    Temuujin, Odsuren
    Ahn, Jinhyun
    Im, Dong-Hyuk
    JOURNAL OF SUPERCOMPUTING, 2021, 77 (07): : 7270 - 7286