Parameter-expandeddata augmentation for analyzing correlated binary data using multivariate probit models

被引:5
|
作者
Zhang, Xiao [1 ]
机构
[1] Michigan Technol Univ, Math Sci, 1400 Townsend Dr, Houghton, MI 49931 USA
关键词
correlated binary data; data augmentation; multivariate probit model; parameter-expanded data augmentation; BAYESIAN-ANALYSIS; MARKOV-CHAIN; EXPANSION;
D O I
10.1002/sim.8685
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Data augmentation has been commonly utilized to analyze correlated binary data using multivariate probit models in Bayesian analysis. However, the identification issue in the multivariate probit models necessitates a rigorous Metropolis-Hastings algorithm for sampling a correlation matrix, which may cause slow convergence and inefficiency of Markov chains. It is well-known that the parameter-expanded data augmentation, by introducing a working/artificial parameter or parameter vector, makes an identifiable model be non-identifiable and improves the mixing and convergence of data augmentation components. Therefore, we motivate to develop efficient parameter-expanded data augmentations to analyze correlated binary data using multivariate probit models. We investigate both the identifiable and non-identifiable multivariate probit models and develop the corresponding parameter-expanded data augmentation algorithms. We point out that the approaches, based on one non-identifiable model, circumvent a Metropolis-Hastings algorithm for sampling a correlation matrix and improve the convergence and mixing of correlation parameters; the identifiable model may produce the estimated regression parameters with smaller standard errors than the non-identifiable model does. We illustrate our proposed approaches using simulation studies and through the application to a longitudinal dataset from the Six Cities study.
引用
收藏
页码:3637 / 3652
页数:16
相关论文
共 50 条
  • [1] Amultiple imputationmethod for incomplete correlated ordinal data using multivariate probit models
    Zhang, Xiao
    Li, Quanlin
    Cropsey, Karen
    Yang, Xiaowei
    Zhang, Kui
    Belin, Thomas
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2017, 46 (03) : 2360 - 2375
  • [2] Multivariate probit linear mixed models for multivariate longitudinal binary data
    Lee, Kuo-Jung
    Kim, Chanmin
    Yoo, Jae Keun
    Lee, Keunbaik
    STATISTICS IN MEDICINE, 2024, 43 (08) : 1527 - 1548
  • [3] ANALYZING CORRELATED BINARY DATA USING SAS
    LIPSITZ, SR
    HARRINGTON, DP
    COMPUTERS AND BIOMEDICAL RESEARCH, 1990, 23 (03): : 268 - 282
  • [4] Analysis of Misclassified Correlated Binary Data Using a Multivariate Probit Model when Covariates are Subject to Measurement Error
    Roy, Surupa
    Banerjee, Tathagata
    BIOMETRICAL JOURNAL, 2009, 51 (03) : 420 - 432
  • [5] Multivariate probit analysis of binary familial data using stochastic representations
    Deng, Yihao
    Sabo, Roy T.
    Chaganty, N. Rao
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2012, 56 (03) : 656 - 663
  • [6] Likelihood Analysis of Multivariate Probit Models Using a Parameter Expanded MCEM Algorithm
    Xu, Huiping
    Craig, Bruce A.
    TECHNOMETRICS, 2010, 52 (03) : 340 - 348
  • [7] On the multivariate probit model for exchangeable binary data with covariates
    Stefanescu, C
    Turnbull, BW
    BIOMETRICAL JOURNAL, 2005, 47 (02) : 206 - 218
  • [8] A BAYESIAN APPROACH TO PARAMETER ESTIMATION IN BINARY LOGIT AND PROBIT MODELS
    Tektas, Derya
    Guenay, Sueleyman
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2008, 37 (02): : 167 - 176
  • [9] Efficient data augmentation for multivariate probit models with panel data: an application to general practitioner decision making about contraceptives
    Chin, Vincent
    Gunawan, David
    Fiebig, Denzil G.
    Kohn, Robert
    Sisson, Scott A.
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2020, 69 (02) : 277 - 300
  • [10] Optimal designs for the logit and probit models for binary data
    Sitter, RR
    Fainaru, I
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1997, 25 (02): : 175 - 190