A New Stochastic Process with Long-Range Dependence

被引:0
|
作者
Kim, Sung Ik [1 ]
Kim, Young Shin [2 ]
机构
[1] Louisiana State Univ Shreveport, Coll Business, 1 Univ Pl, Shreveport, LA 71115 USA
[2] SUNY Stony Brook, Coll Business, 100 Nicolls Road, Stony Brook, NY 11794 USA
来源
关键词
Generalized hyperbolic process; Levy process; Time-changed Brownian motion; Long-range dependence; Fractional Brownian motion; MEMORY;
D O I
10.2991/jsta.d.200923.001
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we introduce a fractional Generalized Hyperbolic process, a new stochastic process with long-range dependence obtained by subordinating fractional Brownian motion to a fractional Generalized Inverse Gaussian process. The basic properties and covariance structure between the elements of the processes are discussed, and we present numerical methods to generate the sample paths for the processes. (c) 2020 The Authors. Published by Atlantis Press B.V.
引用
收藏
页码:432 / 438
页数:7
相关论文
共 50 条
  • [1] A New Stochastic Process with Long-Range Dependence
    Sung Ik Kim
    Young Shin Kim
    Journal of Statistical Theory and Applications, 2020, 19 : 432 - 438
  • [2] Stochastic Volatility with Long-Range Dependence
    Casas, I
    Gao, J.
    MODSIM 2005: INTERNATIONAL CONGRESS ON MODELLING AND SIMULATION: ADVANCES AND APPLICATIONS FOR MANAGEMENT AND DECISION MAKING: ADVANCES AND APPLICATIONS FOR MANAGEMENT AND DECISION MAKING, 2005, : 802 - 806
  • [3] Long-range dependence
    Beran, Jan
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2010, 2 (01) : 26 - 35
  • [4] Parameter estimation of stochastic processes with long-range dependence and intermittency
    Gao, JT
    Anh, V
    Heyde, C
    Tieng, Q
    JOURNAL OF TIME SERIES ANALYSIS, 2001, 22 (05) : 517 - 535
  • [5] On the Long-Range Dependence of Mixed Fractional Poisson Process
    Kataria, K. K.
    Khandakar, M.
    JOURNAL OF THEORETICAL PROBABILITY, 2021, 34 (03) : 1607 - 1622
  • [6] On the Long-Range Dependence of Mixed Fractional Poisson Process
    K. K. Kataria
    M. Khandakar
    Journal of Theoretical Probability, 2021, 34 : 1607 - 1622
  • [7] Stochastic process of equilibrium fluctuations of a system with long-range interactions
    Bouchet, F
    PHYSICAL REVIEW E, 2004, 70 (03):
  • [8] Continuous-time stochastic processes with cyclical long-range dependence
    Anh, VV
    Knopova, VP
    Leonenko, NN
    AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2004, 46 (02) : 275 - 296
  • [9] Option Pricing Under Multifractional Process and Long-Range Dependence
    Mattera, Raffaele
    Di Sciorio, Fabrizio
    FLUCTUATION AND NOISE LETTERS, 2021, 20 (01):
  • [10] On defining long-range dependence
    Heyde, CC
    Yang, Y
    JOURNAL OF APPLIED PROBABILITY, 1997, 34 (04) : 939 - 944