WEAK TYPE COMMUTATOR AND LIPSCHITZ ESTIMATES: RESOLUTION OF THE NAZAROV-PELLER CONJECTURE

被引:25
|
作者
Caspers, M. [1 ]
Potapov, D. [2 ]
Sukochev, F. [2 ]
Zanin, D. [2 ]
机构
[1] Univ Munster, Fachbereich Math & Informat, Einsteinstr 62, D-48149 Munster, Germany
[2] UNSW, Sch Math & Stat, Kensington, NSW 2052, Australia
关键词
ABSOLUTE VALUE; OPERATOR; NORMS;
D O I
10.1353/ajm.2019.0019
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let M be a semi-finite von Neumann algebra and let f : R -> C be a Lipschitz function. If A, B is an element of M are self-adjoint operators such that [A, B] is an element of L-1(M), then parallel to[f (A), B]parallel to(1, infinity) <= C-abs parallel to f'parallel to(infinity)parallel to[A, B]parallel to(1), where C-abs is an absolute constant independent of f , M and A, B and parallel to.parallel to(1,infinity) denotes the weak L-1 -norm. If X, Y is an element of M are self-adjoint operators such that X - Y is an element of L-1(M), then parallel to f(X) - f(Y)parallel to(1,infinity )<= C-abs parallel to f'parallel to(infinity)parallel to X-Y parallel to(1). This result resolves a conjecture raised by F. Nazarov and V. Peller implying a couple of existing results in perturbation theory.
引用
收藏
页码:593 / 610
页数:18
相关论文
共 4 条
  • [1] WEAK TYPE OPERATOR LIPSCHITZ AND COMMUTATOR ESTIMATES FOR COMMUTING TUPLES
    Caspers, Martijn
    Sukochev, Fedor
    Zanin, Dmitriy
    ANNALES DE L INSTITUT FOURIER, 2018, 68 (04) : 1643 - 1669
  • [2] Weak-type Estimates in Morrey Spaces for Maximal Commutator and Commutator of Maximal Function
    Gogatishvili, Amiran
    Mustafayev, Rza
    Agcayazi, Mujdat
    TOKYO JOURNAL OF MATHEMATICS, 2018, 41 (01) : 193 - 218
  • [3] Proof of an extension of E. Sawyer’s conjecture about weighted mixed weak-type estimates
    Kangwei Li
    Sheldy Ombrosi
    Carlos Pérez
    Mathematische Annalen, 2019, 374 : 907 - 929
  • [4] Proof of an extension of E. Sawyer's conjecture about weighted mixed weak-type estimates
    Li, Kangwei
    Ombrosi, Sheldy
    Perez, Carlos
    MATHEMATISCHE ANNALEN, 2019, 374 (1-2) : 907 - 929