Matrix-based hierarchical fuzzy systems

被引:0
|
作者
Aja-Fernandez, Santiago [1 ]
Alberola-Lopez, Carlos [1 ]
机构
[1] Univ Valladolid, ETSI Telecommun, Lab Procesado Imagen, Campus Miguel Delibes, E-47011 Valladolid, Spain
关键词
hierarchical fuzzy systems; FITM; transition matrices; SAM;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A matrix inference method for fuzzy systems is used to deal with hierarchical fuzzy systems (HFSs). A method to decompose a multiple input fuzzy system into a HFS is presented. This method is based in representing the structure of a fuzzy system using matrices. An example of such a conversion for a three-input system is included.
引用
收藏
页码:92 / +
页数:2
相关论文
共 50 条
  • [1] Matrix-based hierarchical clustering for developing product architecture
    Daie, Pooya
    Li, Simon
    CONCURRENT ENGINEERING-RESEARCH AND APPLICATIONS, 2016, 24 (02): : 139 - 152
  • [2] Matrix modeling of hierarchical fuzzy systems
    Aja-Fernandez, Santiago
    Alberola-Lopez, Carlos
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2008, 16 (03) : 585 - 599
  • [3] FUZZY RELATIONAL MATRIX-BASED STABILITY ANALYSIS FOR FIRST-ORDER FUZZY RELATIONAL DYNAMIC SYSTEMS
    Ashtiani, A. Aghili
    Nikravesh, S. K. Y.
    IRANIAN JOURNAL OF FUZZY SYSTEMS, 2014, 11 (02): : 59 - 70
  • [4] Rigorous proof of fuzzy error propagation with matrix-based LCI
    Heijungs, Reinout
    Tan, Raymond R.
    INTERNATIONAL JOURNAL OF LIFE CYCLE ASSESSMENT, 2010, 15 (09): : 1014 - 1019
  • [5] Granular matrix-based knowledge reductions of formal fuzzy contexts
    Lin, Yidong
    Li, Jinjin
    Tan, Anhui
    Zhang, Jia
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2020, 11 (03) : 643 - 656
  • [6] Using fuzzy numbers to propagate uncertainty in matrix-based LCI
    Tan, Raymond R.
    INTERNATIONAL JOURNAL OF LIFE CYCLE ASSESSMENT, 2008, 13 (07): : 585 - 592
  • [7] Granular matrix-based knowledge reductions of formal fuzzy contexts
    Yidong Lin
    Jinjin Li
    Anhui Tan
    Jia Zhang
    International Journal of Machine Learning and Cybernetics, 2020, 11 : 643 - 656
  • [8] Rigorous proof of fuzzy error propagation with matrix-based LCI
    Reinout Heijungs
    Raymond R. Tan
    The International Journal of Life Cycle Assessment, 2010, 15 : 1014 - 1019
  • [9] On the “rigorous proof of fuzzy error propagation with matrix-based LCI”
    Nathan Cruze
    Prem K. Goel
    Bhavik R. Bakshi
    The International Journal of Life Cycle Assessment, 2013, 18 : 516 - 519
  • [10] On the "rigorous proof of fuzzy error propagation with matrix-based LCI"
    Cruze, Nathan
    Goel, Prem K.
    Bakshi, Bhavik R.
    INTERNATIONAL JOURNAL OF LIFE CYCLE ASSESSMENT, 2013, 18 (02): : 516 - 519