The discrete universality of the periodic Hurwitz zeta function

被引:25
|
作者
Laurincikas, A. [1 ]
Macaitiene, R. [2 ]
机构
[1] Vilnius State Univ, LT-03225 Vilnius, Lithuania
[2] Siauliai Univ, LT-77156 Shiauliai, Lithuania
关键词
periodic Hurwitz zeta function; limit theorem; universality;
D O I
10.1080/10652460902742788
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The periodic Hurwitz zeta function [image omitted], s=sigma+it, 01, is defined, for sigma 1, by [image omitted] and by analytic continuation elsewhere. Here {am} is a periodic sequence of complex numbers. In this paper, a discrete universality theorem for the function [image omitted] with a transcendental parameter is proved. Roughly speaking, this means that every analytic function can be approximated uniformly on compact sets by shifts [image omitted], where m is a non-negative integer and h is a fixed positive number such that [image omitted] is rational.
引用
收藏
页码:673 / 686
页数:14
相关论文
共 50 条