Improved bounds on the Hadwiger-Debrunner numbers

被引:14
|
作者
Keller, Chaya [1 ]
Smorodinsky, Shakhar [1 ,2 ]
Tardos, Gabor [3 ]
机构
[1] Ben Gurion Univ Negev, Dept Math, IL-84105 Beer Sheva, Israel
[2] EPFL Lausanne, Inst Math, Route Cantonale, CH-1015 Lausanne, Switzerland
[3] Renyi Inst, Realtanoda Utca 13-15, H-1053 Budapest, Hungary
基金
以色列科学基金会; 瑞士国家科学基金会;
关键词
WEAK EPSILON-NETS; CONVEX-SETS; UNION; (P;
D O I
10.1007/s11856-018-1685-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let HD (d) (p, q) denote the minimal size of a transversal that can always be guaranteed for a family of compact convex sets in Rd which satisfy the (p, q)-property (p >= q >= d + 1). In a celebrated proof of the Hadwiger-Debrunner conjecture, Alon and Kleitman proved that HD (d) (p, q) exists for all p >= q >= d + 1. Specifically, they prove that . We present several improved bounds: (i) For any . (ii) For q >= log p, . (iii) For every I mu > 0 there exists a p (0) = p (0)(I mu) such that for every p >= p (0) and for every we have p - q + 1 <= HD (d) (p, q) <= p - q + 2. The latter is the first near tight estimate of HD (d) (p, q) for an extended range of values of (p, q) since the 1957 Hadwiger-Debrunner theorem. We also prove a (p, 2)-theorem for families in R (2) with union complexity below a specific quadratic bound.
引用
收藏
页码:925 / 945
页数:21
相关论文
共 50 条
  • [1] Improved bounds on the Hadwiger–Debrunner numbers
    Chaya Keller
    Shakhar Smorodinsky
    Gábor Tardos
    Israel Journal of Mathematics, 2018, 225 : 925 - 945
  • [2] A new lower bound on Hadwiger-Debrunner numbers in the plane
    Chaya Keller
    Shakhar Smorodinsky
    Israel Journal of Mathematics, 2021, 244 : 649 - 680
  • [3] A NEW LOWER BOUND ON HADWIGER-DEBRUNNER NUMBERS IN THE PLANE
    Keller, C.
    Smorodinsky, S.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2019, 88 (03): : 855 - 860
  • [4] A NEW LOWER BOUND ON HADWIGER-DEBRUNNER NUMBERS IN THE PLANE
    Keller, Chaya
    Smorodinsky, Shakhar
    ISRAEL JOURNAL OF MATHEMATICS, 2021, 244 (02) : 649 - 680
  • [5] A New Lower Bound on Hadwiger-Debrunner Numbers in the Plane
    Keller, Chaya
    Smorodinsky, Shakhar
    PROCEEDINGS OF THE THIRTY-FIRST ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS (SODA'20), 2020, : 1155 - 1169
  • [6] A New Lower Bound on Hadwiger-Debrunner Numbers in the Plane
    Keller, Chaya
    Smorodinsky, Shakhar
    PROCEEDINGS OF THE 2020 ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, SODA, 2020, : 1155 - 1169
  • [7] On Max-Clique for intersection graphs of sets and the Hadwiger-Debrunner numbers
    Keller, Chaya
    Smorodibsky, Shankhar
    Tardos, Gabor
    PROCEEDINGS OF THE TWENTY-EIGHTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2017, : 2254 - 2263
  • [8] A Variant of the Hadwiger-Debrunner (p, q)-Problem in the Plane
    Govindarajan, Sathish
    Nivasch, Gabriel
    DISCRETE & COMPUTATIONAL GEOMETRY, 2015, 54 (03) : 637 - 646
  • [9] PIERCING CONVEX-SETS AND THE HADWIGER-DEBRUNNER (P, Q)-PROBLEM
    ALON, N
    KLEITMAN, DJ
    ADVANCES IN MATHEMATICS, 1992, 96 (01) : 103 - 112
  • [10] On lower bounds for Borsuk and Hadwiger numbers
    Raigorodskii, AM
    RUSSIAN MATHEMATICAL SURVEYS, 2004, 59 (03) : 585 - 586