Convergence of nonhomogeneous random walks generated by compound Cox processes to generalized variance-gamma Levy processes

被引:2
|
作者
Korolev, V. Yu. [1 ,2 ]
Korchagin, A. Yu. [1 ]
Zeifman, A. I. [2 ,3 ,4 ]
机构
[1] Moscow MV Lomonosov State Univ, Fac Computat Math & Cybernet, Moscow 119991, Russia
[2] Inst Informat Problems, Moscow 119333, Russia
[3] Vologda State Univ, Vologda 160000, Russia
[4] Russian Acad Sci, Inst Socioecon Dev Territories, Vologda 160014, Russia
基金
俄罗斯科学基金会;
关键词
DISTRIBUTIONS;
D O I
10.1134/S1064562415040043
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Functional limit theorems on the convergence of nonhomogeneous random walks generated by compound Cox processes to L,vy processes with generalized one-dimensional variance-gamma distributions, in particular, to subordinate Wiener processes with subordinator being a L,vy-Weibull process, are proved.
引用
收藏
页码:408 / 411
页数:4
相关论文
共 50 条
  • [1] Convergence of nonhomogeneous random walks generated by compound Cox processes to generalized variance-gamma Lévy processes
    V. Yu. Korolev
    A. Yu. Korchagin
    A. I. Zeifman
    Doklady Mathematics, 2015, 92 : 408 - 411
  • [2] On convergence of random walks generated by compound Cox processes to Levy processes
    Korolev, V. Yu.
    Zaks, L. M.
    Zeifman, A. I.
    STATISTICS & PROBABILITY LETTERS, 2013, 83 (10) : 2432 - 2438
  • [3] Efficient simulation of gamma and variance-gamma processes
    Avramidis, AN
    L'Ecuyer, P
    Tremblay, PA
    PROCEEDINGS OF THE 2003 WINTER SIMULATION CONFERENCE, VOLS 1 AND 2, 2003, : 319 - 326
  • [4] Conditioned random walks and Levy processes
    Doney, R. A.
    Jones, E. M.
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2012, 44 : 139 - 150
  • [5] Stationary-increment student and variance-gamma processes
    Finlay, Richard
    Seneta, Eugene
    JOURNAL OF APPLIED PROBABILITY, 2006, 43 (02) : 441 - 453
  • [6] ON CONVERGENCE OF RANDOM WALKS HAVING JUMPS WITH FINITE VARIANCES TO STABLE LEVY PROCESSES
    Korolev, Victor
    Bening, Vladimir
    Zaks, Lilya
    Zeifman, Alexander
    PROCEEDINGS 27TH EUROPEAN CONFERENCE ON MODELLING AND SIMULATION ECMS 2013, 2013, : 601 - +
  • [7] On a fluctuation identity for random walks and Levy processes
    Alili, L
    Chaumont, L
    Doney, RA
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2005, 37 : 141 - 148
  • [8] α-TRANSIENCE AND α-RECURRENCE FOR RANDOM WALKS AND LEVY PROCESSES
    ZHANG HUIZENG ZHAO MINZHI YING JIANGANG Department of Mathematics
    Chinese Annals of Mathematics, 2005, (01) : 127 - 142
  • [9] Random walks and Levy processes as rough paths
    Chevyrev, Ilya
    PROBABILITY THEORY AND RELATED FIELDS, 2018, 170 (3-4) : 891 - 932
  • [10] Lifting Levy processes to hyperfinite random walks
    Albeverio, Sergio
    Herzberg, Frederik S.
    BULLETIN DES SCIENCES MATHEMATIQUES, 2006, 130 (08): : 697 - 706