Soft computing models and intelligent optimization system in electro-discharge machining of SiC/Al composites

被引:26
|
作者
Ming, Wuyi [1 ]
Ma, Jun [1 ]
Zhang, Zhen [2 ,4 ]
Huang, Hao [2 ]
Shen, Dili [3 ]
Zhang, Guojun [2 ]
Huang, Yu [2 ]
机构
[1] Zhengzhou Univ Light Ind, Dept Electromech Sci & Engn, Zhengzhou 450002, Peoples R China
[2] Huazhong Univ Sci, Sch Mech Sci & Engn, State Key Lab Digital Mfg Equipment, Technol, Wuhan 430074, Peoples R China
[3] Zhong Zhou Univ, Coll Engn, Zhengzhou 450015, Peoples R China
[4] Univ Illinois, Mech Sci & Engn, Urbana, IL 61801 USA
来源
INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY | 2016年 / 87卷 / 1-4期
基金
中国国家自然科学基金;
关键词
Multi-variable regression model; BPNN; RBNN; Intelligent optimization system; SiC/Al composites; EDM; ARTIFICIAL NEURAL-NETWORK; PROCESS PARAMETERS; SURFACE-ROUGHNESS; PREDICTION; REGRESSION; RESPONSES; SPEED;
D O I
10.1007/s00170-016-8455-1
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, a multi-variable regression model, a back propagation neural network (BPNN) and a radial basis neural network (RBNN) have been utilized to correlate the cutting parameters and the performance while electro-discharge machining (EDM) of SiC/Al composites. The four cutting parameters are peak current (I (p) ), pulse-on time (T (o n) ), pulse-off time (T (o f f) ), and servo voltage (S (v) ); the performance measures are material remove rate (MRR) and surface roughness (Ra). By testing a large number of BPNN architectures, 4-5-1 and 4-7-1 have been found to be the optimal one for MRR and Ra, respectively; and it can predict them with 10.61 % overall mean prediction error. As for RBNN architectures, it can predict them with 12.77 % overall mean prediction error. The multivariable regression model yields an overall mean prediction error of 13.93 %. All of these three models have been used to study the effect of input parameters on the material remove rate and surface roughness, and finally to optimize them with genetic algorithm (GA) and desirability function. Then, an intelligent optimization system with graphical user interface (GUI) has been built based on these multi-optimization techniques, in which users can obtain the optimized cutting parameters under the desired surface roughness (Ra).
引用
收藏
页码:201 / 217
页数:17
相关论文
共 50 条
  • [1] Soft computing models and intelligent optimization system in electro-discharge machining of SiC/Al composites
    Wuyi Ming
    Jun Ma
    Zhen Zhang
    Hao Huang
    Dili Shen
    Guojun Zhang
    Yu Huang
    The International Journal of Advanced Manufacturing Technology, 2016, 87 : 201 - 217
  • [2] Soft computing models and intelligent optimization system in electro-discharge machining of SiC/Al composites
    Ming, Wuyi
    Ma, Jun
    Zhang, Zhen
    Huang, Hao
    Shen, Dili
    Zhang, Guojun
    Huang, Yu
    International Journal of Advanced Manufacturing Technology, 2016, 87 (1-4): : 201 - 217
  • [3] On the optimization into wire electro-discharge machining of Al/Al2O3p composites
    Patil, N. G.
    Brahmankar, P. K.
    Navale, L. G.
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION 2007, VOL 3: DESIGN AND MANUFACTURING, 2008, : 573 - 582
  • [4] Experimental investigation of machining characteristics for Al-SiC12% composite in Electro-discharge machining
    Mohanty, Shalini
    Routara, B. C.
    Bhuayan, R. K.
    MATERIALS TODAY-PROCEEDINGS, 2017, 4 (08) : 8778 - 8787
  • [5] Some invesitigations into multi-objective optimization of wire electro-discharge machining of Al/SiCp composites
    Patil, N. G.
    Brahmankar, P. K.
    Navale, L. G.
    PROCEEDINGS OF THE ASME INTERNATIONAL CONFERENCE ON MANUFACTURING SCIENCE AND ENGINEERING - 2007, 2007, : 967 - 974
  • [6] Electro-discharge machining of metal matrix composites - a review
    Pradhan, Rahul Chandra
    Das, Diptikanta
    MATERIALS TODAY-PROCEEDINGS, 2020, 24 : 251 - 260
  • [7] A computer-aided system for the optimization of the accuracy of the wire electro-discharge machining process
    Sanchez, JA
    De Lacalle, LNL
    Lamikiz, A
    INTERNATIONAL JOURNAL OF COMPUTER INTEGRATED MANUFACTURING, 2004, 17 (05) : 413 - 420
  • [8] Soft computing models based prediction of cutting speed and surface roughness in wire electro-discharge machining of tungsten carbide cobalt composite
    Probir Saha
    Abhijit Singha
    Surjya K. Pal
    Partha Saha
    The International Journal of Advanced Manufacturing Technology, 2008, 39 : 74 - 84
  • [9] Soft computing models based prediction of cutting speed and surface roughness in wire electro-discharge machining of tungsten carbide cobalt composite
    Saha, Probir
    Singha, Abhijit
    Pal, Surjya K.
    Saha, Partha
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2008, 39 (1-2): : 74 - 84
  • [10] RESPONSE SURFACE MODELING AND OPTIMIZATION OF ELECTRO-DISCHARGE MACHINING OF AL/AL2O3P
    Brahmankar, P. K.
    Patil, N. G.
    Navale, L. G.
    IMECE2009, VOL 4, 2010, : 57 - 67