A classification of barycentrically associative polynomial functions

被引:4
|
作者
Marichal, Jean-Luc [1 ]
Mathonet, Pierre [2 ]
Tomaschek, Joerg [1 ]
机构
[1] FSTC Univ Luxembourg, Math Res Unit, L-1359 Luxembourg, Luxembourg
[2] Univ Liege, Dept Math, B-4000 Liege, Belgium
关键词
Barycentric associativity; decomposability; polynomial function; integral domain;
D O I
10.1007/s00010-014-0332-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We describe the class of polynomial functions which are barycentrically associative over an infinite commutative integral domain.
引用
收藏
页码:1281 / 1291
页数:11
相关论文
共 50 条
  • [1] A classification of barycentrically associative polynomial functions
    Jean-Luc Marichal
    Pierre Mathonet
    Jörg Tomaschek
    Aequationes mathematicae, 2015, 89 : 1281 - 1291
  • [2] Barycentrically associative and preassociative functions
    Marichal, J. -L.
    Teheux, B.
    ACTA MATHEMATICA HUNGARICA, 2015, 145 (02) : 468 - 488
  • [3] Barycentrically associative and preassociative functions
    J. -L. Marichal
    B. Teheux
    Acta Mathematica Hungarica, 2015, 145 : 468 - 488
  • [4] Strongly barycentrically associative and preassociative functions
    Marichal, Jean-Luc
    Teheux, Bruno
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 437 (01) : 181 - 193
  • [5] A Characterization of Barycentrically Preassociative Functions
    Marichal, Jean-Luc
    Teheux, Bruno
    RESULTS IN MATHEMATICS, 2016, 69 (1-2) : 245 - 256
  • [6] A Characterization of Barycentrically Preassociative Functions
    Jean-Luc Marichal
    Bruno Teheux
    Results in Mathematics, 2016, 69 : 245 - 256
  • [7] Associative Polynomial Functions over Bounded Distributive Lattices
    Miguel Couceiro
    Jean-Luc Marichal
    Order, 2011, 28 : 1 - 8
  • [8] Associative Polynomial Functions over Bounded Distributive Lattices
    Couceiro, Miguel
    Marichal, Jean-Luc
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2011, 28 (01): : 1 - 8
  • [9] On the classification of geometric codes by polynomial functions
    Glynn, D.G.
    Hirschfeld, J.W.P.
    Designs, Codes, and Cryptography, 1995, 6 (03):
  • [10] Distributivity of associative polynomial compositions
    Bell, ET
    ANNALS OF MATHEMATICS, 1936, 37 : 368 - 373