Group closures of one-to-one transformations

被引:4
|
作者
Levi, I [1 ]
机构
[1] Univ Louisville, Dept Math, Louisville, KY 40292 USA
关键词
D O I
10.1017/S000497270003985X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a semigroup S of transformations of an infinite set X let Gs be the group of all the permutations of X that preserve S' under conjugation. Fix a permutation group H on X and a transformation f of X, and let (f : H) = ({hf h(-1) : h epsilon H}) be the H-closure of f. We find necessary and sufficient conditions on a one-to-one transformation f and a normal subgroup H of the symmetric group on X to satisfy G((f:H)) = H. We also show that if S is a semigroup of one-to-one transformations of X and G(S) contains the alternating group on X then Aut(S) = Inn(S) congruent to G(S).
引用
收藏
页码:177 / 188
页数:12
相关论文
共 50 条