Ergodic properties of fractional Brownian-Langevin motion

被引:329
|
作者
Deng, Weihua [1 ,2 ]
Barkai, Eli [1 ]
机构
[1] Bar Ilan Univ, Dept Phys, IL-52900 Ramat Gan, Israel
[2] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Peoples R China
来源
PHYSICAL REVIEW E | 2009年 / 79卷 / 01期
关键词
ANOMALOUS DIFFUSION; RANDOM-WALKS;
D O I
10.1103/PhysRevE.79.011112
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We investigate the time average mean-square displacement (delta(2)) over bar (x(t)) = integral(0) (t-Delta)[x(t' + Delta) -x(t')](2)dt'/(t-Delta) for fractional Brownian-Langevin motion where x (t) is the stochastic trajectory and Delta is the lag time. Unlike the previously investigated continuous-time random-walk model, (delta(2)) over bar converges to the ensemble average < x(2)> similar to t(2H) in the long measurement time limit. The convergence to ergodic behavior is slow, however, and surprisingly the Hurst exponent H = 3/4 marks the critical point of the speed of convergence. When H < 3/4, the ergodicity breaking parameter E-B = [<[(delta(2)) over bar (x(t))](2)> - <(delta(2)) over bar (x(t))>(2)] / <(delta(2)) over bar (x(t))>(2) similar to k(H)Delta t(-1), when H = 3/4, E-B similar to (9/16) (ln t)Delta t(-1), and when 3/4 < H < 1, E-B similar to k(H)Delta(4-4H)t(4H-4). In the ballistic limit H -> 1 ergodicity is broken and E-B similar to 2. The critical point H = 3/4 is marked by the divergence of the coefficient k (H). Fractional Brownian motion as a model for recent experiments of subdiffusion of mRNA in the cell is briefly discussed, and a comparison with the continuous-time random-walk model is made.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Localization and Ballistic Diffusion for the Tempered Fractional Brownian-Langevin Motion
    Chen, Yao
    Wang, Xudong
    Deng, Weihua
    JOURNAL OF STATISTICAL PHYSICS, 2017, 169 (01) : 18 - 37
  • [2] Ergodic properties of fractional Langevin motion with spatial correlated noise
    Duan, H-G
    Liang, X-T
    EUROPEAN PHYSICAL JOURNAL B, 2012, 85 (06):
  • [3] Ergodic properties of fractional Langevin motion with spatial correlated noise
    H. -G. Duan
    X. -T. Liang
    The European Physical Journal B, 2012, 85
  • [4] Numerics for the fractional Langevin equation driven by the fractional Brownian motion
    Peng Guo
    Caibin Zeng
    Changpin Li
    YangQuan Chen
    Fractional Calculus and Applied Analysis, 2013, 16 : 123 - 141
  • [5] Numerics for the fractional Langevin equation driven by the fractional Brownian motion
    Guo, Peng
    Zeng, Caibin
    Li, Changpin
    Chen, YangQuan
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2013, 16 (01) : 123 - 141
  • [6] Fractional Brownian motion and motion governed by the fractional Langevin equation in confined geometries
    Jeon, Jae-Hyung
    Metzler, Ralf
    PHYSICAL REVIEW E, 2010, 81 (02)
  • [7] ERGODIC PROPERTIES OF BROWNIAN-MOTION
    UGBEBOR, OO
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 1980, 23 (OCT) : 331 - 340
  • [8] Localization and Ballistic Diffusion for the Tempered Fractional Brownian–Langevin Motion
    Yao Chen
    Xudong Wang
    Weihua Deng
    Journal of Statistical Physics, 2017, 169 : 18 - 37
  • [9] Transient aging in fractional Brownian and Langevin-equation motion
    Kursawe, Jochen
    Schulz, Johannes
    Metzler, Ralf
    PHYSICAL REVIEW E, 2013, 88 (06):
  • [10] Probability density of fractional Brownian motion and the fractional Langevin equation with absorbing walls
    Vojta, Thomas
    Warhover, Alex
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2021, 2021 (03):