On the numerical range of matrices defined over a finite field

被引:0
|
作者
Ballico, E. [1 ]
机构
[1] Univ Trento, Dept Math, I-38123 Povo, TN, Italy
关键词
Numerical range; Matrix; Finite field; CODES;
D O I
10.1016/j.ffa.2020.101730
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let q be a prime power. For u = (u(1), ..., u(n)),v = (v(1), ..., v(n)) is an element of F-q2(n) let < u, v > : = Sigma(n)(i=1) u(i)(q)v(i) be the Hermitian form of F-q2(n). Fix an n x n matrix M over F-q2. Set Num(M) : = {< u, Mu > vertical bar u is an element of F-q2(n), < u, u > = 1} (the numerical range of M introduced by Coons, Jenkins, Knowles, Luke and Rault (case q a prime q equivalent to 3 (mod 4)) and by the author (arbitrary q)). When n = 2 we prove an upper bound for vertical bar Num(M)vertical bar. We describe Num(M) for several classes of matrices, mostly for n = 2, 4. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:13
相关论文
共 50 条