Soil organic carbon and total nitrogen storage as affected by land use in a small watershed of the Loess Plateau, China

被引:165
|
作者
Zhang, Chao [1 ,2 ,4 ]
Liu, Guobin [1 ,2 ,3 ]
Xue, Sha [1 ,2 ]
Sun, Caili [3 ]
机构
[1] Chinese Acad Sci, Inst Soil & Water Conservat, State Key Lab Soil Eros & Dryland Farming Loess P, Yangling 712100, Shaanxi, Peoples R China
[2] Minist Water Resources, Yangling 712100, Shaanxi, Peoples R China
[3] NW A&F Univ, Inst Soil & Water Conservat, Yangling 712100, Shaanxi, Peoples R China
[4] Chinese Acad Sci, Grad Sch, Beijing 100049, Peoples R China
关键词
Land use; Organic carbon; Total nitrogen; Storage; Loess Plateau; SEQUESTRATION; GRASSLAND; AFFORESTATION; ACCUMULATION; SUCCESSION; CONVERSION; FARMLAND; DYNAMICS; TILLAGE; MATTER;
D O I
10.1016/j.ejsobi.2012.10.007
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Soil organic carbon (SOC) is an important component of agricultural soil. Understanding the storage of carbon (C) and nitrogen (N) helps us understand how ecosystems would respond to natural and anthropogenic disturbances under different management strategies. Although the quantity of SOC stocks in the Loess Plateau has been previously investigated, the distribution and storage of C in its deep soil layers has been poorly studied to date. The present study was conducted in the Zhifanggou Watershed on the Loess Plateau to evaluate the effect of the types of land use on the distribution and storage of SOC and total nitrogen (TN) at different soil depths. Ten types of land use were investigated: woodland (Robinia pseudoacacia), shrubland (Caragana korshinskii; Hippophae rhamnoides), natural grassland, artificial grassland (Medicago sativa), orchard, check-dam cropland, terraced cropland (Setaria italica; Zea mays), and sloped cropland. The results show that land use significantly affects the SOC and TN content. The reconversion of sloped croplands into forestlands and grasslands improve their SOC and TN content. Natural grassland, terraced cropland with Z. mays, and the artificial grassland had the highest SOC content within 0-60 cm, 60-100 cm, and 150-500 cm layers, respectively. The SOC and TN content in the top layer were higher than those in the deep layer. Natural grassland had the highest SOC and TN storage within 0-40 cm layer, followed by shrubland I (C. korshinskii), check-dam cropland, woodland, and shrubland II (H. rhamnoides), orchard and artificial grassland, whereas the sloped cropland, and the terraced cropland with S. italica had the lowest values. The SOC and TN storage between the top (0 -20 cm) and deep layers (0-100 cm, 0-300 cm, and 0-500 cm) can be modeled using linear function (y = ax + b). The results suggest that natural grasslands may be the optimal choice for SOC and TN sequestration in the Zhifanggou Watershed. Shrublands, woodland, artificial grasslands, orchards, terrace cropland with Z. mays and check-dam croplands are also recommended for their great contribution to SOC and TN storage in the area. (C) 2012 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:16 / 24
页数:9
相关论文
共 50 条
  • [1] Soil organic carbon distribution in relation to land use and its storage in a small watershed of the Loess Plateau, China
    Fang, Xuan
    Xue, Zhijing
    Li, Bicheng
    An, Shaoshan
    CATENA, 2012, 88 (01) : 6 - 13
  • [2] Changes in Soil Organic Carbon and Total Nitrogen at a Small Watershed Scale as the Result of Land Use Conversion on the Loess Plateau
    Xue, Zhijing
    An, Shaoshan
    SUSTAINABILITY, 2018, 10 (12)
  • [3] Effects of land use changes on soil organic carbon, nitrogen and their losses in a typical watershed of the Loess Plateau, China
    Zhu, Guangyu
    Shangguan, Zhouping
    Hu, Xinzhi
    Deng, Lei
    ECOLOGICAL INDICATORS, 2021, 133
  • [4] Soil organic carbon and total nitrogen as affected by vegetation types in Northern Loess Plateau of China
    Fu, Xiaoli
    Shao, Mingan
    Wei, Xiaorong
    Horton, Robert
    GEODERMA, 2010, 155 (1-2) : 31 - 35
  • [5] Spatial variability of soil total nitrogen and soil total phosphorus under different land uses in a small watershed on the Loess Plateau, China
    Wang, Yunqiang
    Zhang, Xingchang
    Huang, Chuanqin
    GEODERMA, 2009, 150 (1-2) : 141 - 149
  • [6] Effects of soil erosion and land use on spatial distribution of soil total phosphorus in a small watershed on the Loess Plateau, China
    Cheng, Yuting
    Li, Peng
    Xu, Guoce
    Li, Zhanbin
    Gao, Haidong
    Zhao, Binhua
    Wang, Tian
    Wang, Feichao
    Cheng, Shengdong
    SOIL & TILLAGE RESEARCH, 2018, 184 : 142 - 152
  • [7] Rill erodibility as influenced by soil and land use in a small watershed of the Loess Plateau, China
    Li, Zhen-wei
    Zhang, Guang-hui
    Geng, Ren
    Wang, Hao
    BIOSYSTEMS ENGINEERING, 2015, 129 : 248 - 257
  • [8] Distribution of soil organic carbon impacted by land-use changes in a hilly watershed of the Loess Plateau, China
    Shi, Peng
    Zhang, Yan
    Li, Peng
    Li, Zhanbin
    Yu, Kunxia
    Ren, Zongping
    Xu, Guoce
    Cheng, Shengdong
    Wang, Feichao
    Ma, Yongyong
    SCIENCE OF THE TOTAL ENVIRONMENT, 2019, 652 : 505 - 512
  • [9] Soil organic carbon as a function of land use and topography on the Loess Plateau of China
    Sun, Wenyi
    Zhu, Hanhua
    Guo, Shengli
    ECOLOGICAL ENGINEERING, 2015, 83 : 249 - 257
  • [10] Soil nitrogen distributions for different land uses and landscape positions in a small watershed on Loess Plateau, China
    Xue, Zhijing
    Cheng, Man
    An, Shaoshan
    ECOLOGICAL ENGINEERING, 2013, 60 : 204 - 213