Optical creation of a supercrystal with three-dimensional nanoscale periodicity

被引:125
|
作者
Stoica, V. A. [1 ]
Laanait, N. [2 ]
Dai, C. [1 ]
Hong, Z. [1 ]
Yuan, Y. [1 ]
Zhang, Z. [3 ]
Lei, S. [1 ]
McCarter, M. R. [4 ]
Yadav, A. [4 ]
Damodaran, A. R. [4 ]
Das, S. [4 ]
Stone, G. A. [1 ]
Karapetrova, J. [3 ]
Walko, D. A. [3 ]
Zhang, X. [3 ]
Martin, L. W. [4 ,5 ]
Ramesh, R. [4 ,5 ]
Chen, L-Q [1 ]
Wen, H. [3 ]
Gopalan, V [1 ]
Freeland, J. W. [3 ]
机构
[1] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA
[2] Ctr Nanophase Mat Sci, Oak Ridge, TN USA
[3] Argonne Natl Lab, Adv Photon Source, 9700 S Cass Ave, Argonne, IL 60439 USA
[4] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA
[5] Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA USA
基金
美国国家科学基金会;
关键词
PHASE; TRANSITION; LATTICE; STATE; ORDER;
D O I
10.1038/s41563-019-0311-x
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Stimulation with ultrafast light pulses can realize and manipulate states of matter with emergent structural, electronic and magnetic phenomena. However, these non-equilibrium phases are often transient and the challenge is to stabilize them as persistent states. Here, we show that atomic-scale PbTiO3/SrTiO3 superlattices, counterpoising strain and polarization states in alternate layers, are converted by sub-picosecond optical pulses to a supercrystal phase. This phase persists indefinitely under ambient conditions, has not been created via equilibrium routes, and can be erased by heating. X-ray scattering and microscopy show this unusual phase consists of a coherent three-dimensional structure with polar, strain and charge-ordering periodicities of up to 30 nm. By adjusting only dielectric properties, the phase-field model describes this emergent phase as a photo-induced charge-stabilized supercrystal formed from a two-phase equilibrium state. Our results demonstrate opportunities for light-activated pathways to thermally inaccessible and emergent metastable states.
引用
收藏
页码:377 / +
页数:8
相关论文
共 50 条
  • [1] Optical creation of a supercrystal with three-dimensional nanoscale periodicity
    V. A. Stoica
    N. Laanait
    C. Dai
    Z. Hong
    Y. Yuan
    Z. Zhang
    S. Lei
    M. R. McCarter
    A. Yadav
    A. R. Damodaran
    S. Das
    G. A. Stone
    J. Karapetrova
    D. A. Walko
    X. Zhang
    L. W. Martin
    R. Ramesh
    L.-Q. Chen
    H. Wen
    V. Gopalan
    J. W. Freeland
    Nature Materials, 2019, 18 : 377 - 383
  • [2] Three-Dimensional Optical Lithography and Nanoscale Optical Connectors
    Vitukhnovsky A.G.
    Zvagelsky R.D.
    Kolymagin D.A.
    Pisarenko A.V.
    Chubich D.A.
    Bulletin of the Russian Academy of Sciences: Physics, 2020, 84 (07) : 760 - 765
  • [3] Carbon structures with three-dimensional periodicity at optical wavelengths
    Zakhidov, AA
    Baughman, RH
    Iqbal, Z
    Cui, CX
    Khayrullin, I
    Dantas, SO
    Marti, I
    Ralchenko, VG
    SCIENCE, 1998, 282 (5390) : 897 - 901
  • [4] Three-dimensional nanoscale optical vortex profilometry
    Sokolenko, Bogdan V.
    Poletaev, Dmitrii A.
    NANOIMAGING AND NANOSPECTROSCOPY V, 2017, 10350
  • [5] Three-Dimensional Nanoscale Optical Cavities of Indefinite Metamaterial
    Yang, Xiaodong
    Yao, Jie
    Rho, Junsuk
    Yin, Xiaobo
    Zhang, Xiang
    2012 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2012,
  • [6] Three-dimensional nanoscale subsurface optical imaging of silicon circuits
    Ramsay, E.
    Serrels, K. A.
    Thomson, M. J.
    Waddie, A. J.
    Taghizadeh, M. R.
    Warburton, R. J.
    Reid, D. T.
    APPLIED PHYSICS LETTERS, 2007, 90 (13)
  • [7] Creation of a three-dimensional optical chain for controllable particle delivery
    Zhao, YQ
    Zhan, QW
    Zhang, YL
    Li, YP
    OPTICS LETTERS, 2005, 30 (08) : 848 - 850
  • [8] Three-dimensional mapping of optical near field of a nanoscale bowtie antenna
    Guo, Rui
    Kinzel, Edward C.
    Li, Yan
    Uppuluri, Sreemanth M.
    Raman, Arvind
    Xu, Xianfan
    OPTICS EXPRESS, 2010, 18 (05): : 4961 - 4971
  • [9] Features of laser breakdown in optical materials in the creation of three-dimensional images
    Bulygin, FV
    Zolotarevskii, YM
    Levina, ÉY
    MEASUREMENT TECHNIQUES, 2002, 44 (12) : 1206 - 1210
  • [10] Features of laser breakdown in optical materials in the creation of three-dimensional images
    Bulygin F.V.
    Zolotarevskii Y.M.
    Levina É.Y.
    Measurement Techniques, 2001, 44 (12) : 1206 - 1210