Vertical redistribution of moisture and aerosol in orographic mixed-phase clouds

被引:2
|
作者
Miltenberger, Annette K. [1 ,2 ]
Field, Paul R. [1 ,3 ]
Hill, Adrian H. [3 ]
Heymsfield, Andrew J. [4 ]
机构
[1] Univ Leeds, Sch Earth & Environm, Inst Climate & Atmospher Sci, Leeds, W Yorkshire, England
[2] Johannes Gutenberg Univ Mainz, Inst Atmospher Phys, Mainz, Germany
[3] Met Off, Exeter, Devon, England
[4] Natl Ctr Atmospher Res, POB 3000, Boulder, CO 80307 USA
关键词
IN-SITU OBSERVATIONS; ICE-NUCLEATION; LAGRANGIAN ANALYSIS; SOUTHERN-OCEAN; MINERAL DUST; WAVE CLOUDS; PART I; PRECIPITATION; SIMULATIONS; CIRRUS;
D O I
10.5194/acp-20-7979-2020
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Orographic wave clouds offer a natural laboratory to investigate cloud microphysical processes and their representation in atmospheric models. Wave clouds impact the larger-scale flow by the vertical redistribution of moisture and aerosol. Here we use detailed cloud microphysical observations from the Ice in Clouds Experiment - Layer Clouds (ICE-L) campaign to evaluate the recently developed Cloud Aerosol Interacting Microphysics (CASIM) module in the Met Office Unified Model (UM) with a particular focus on different parameterizations for heterogeneous freezing. Modelled and observed thermodynamic and microphysical properties agree very well (deviation of air temperature < 1 K; specific humidity < 0.2 g kg(-1) ; vertical velocity < 1 m s(-1) ; cloud droplet number concentration < 40 cm(-3)), with the exception of an overestimated total condensate content and too long a sedimentation tail. The accurate reproduction of the environmental thermodynamic and dynamical wave structure enables the model to reproduce the right cloud in the right place and at the right time. All heterogeneous freezing parameterizations except Atkinson et al. (2013) perform reasonably well, with the best agreement in terms of the temperature dependency of ice crystal number concentrations for the parameterizations of DeMott et al. (2010) and Tobo et al. (2013). The novel capabilities of CASIM allowed testing of the impact of assuming different soluble fractions of dust particles on immersion freezing, but this is found to only have a minor impact on hydrometeor mass and number concentrations. The simulations were further used to quantify the modification of moisture and aerosol profiles by the wave cloud. The changes in both variables are on order of 15 % of their upstream values, but the modifications have very different vertical structures for the two variables. Using a large number of idealized simulations we investigate how the induced changes depend on the wave period (100-1800 s), cloud top temperature (-15 to -50 degrees C), and cloud thickness (1-5 km) and propose a conceptual model to describe these dependencies.
引用
收藏
页码:7979 / 8001
页数:23
相关论文
共 50 条
  • [1] Persistence of orographic mixed-phase clouds
    Lohmann, U.
    Henneberger, J.
    Henneberg, O.
    Fugal, J. P.
    Buehl, J.
    Kanji, Z. A.
    GEOPHYSICAL RESEARCH LETTERS, 2016, 43 (19) : 10512 - 10519
  • [2] Effects of Aerosol Solubility and Regeneration on Mixed-Phase Orographic Clouds and Precipitation
    Xue, Lulin
    Teller, Amit
    Rasmussen, Roy
    Geresdi, Istvan
    Pan, Zaitao
    Liu, Xiaodong
    JOURNAL OF THE ATMOSPHERIC SCIENCES, 2012, 69 (06) : 1994 - 2010
  • [3] Formation and Development of Orographic Mixed-Phase Clouds
    Henneberg, Olga
    Henneberger, Jan
    Lohmann, Ulrike
    JOURNAL OF THE ATMOSPHERIC SCIENCES, 2017, 74 (11) : 3703 - 3724
  • [4] Intercomparison of aerosol-cloud-precipitation interactions in stratiform orographic mixed-phase clouds
    Muhlbauer, A.
    Hashino, T.
    Xue, L.
    Teller, A.
    Lohmann, U.
    Rasmussen, R. M.
    Geresdi, I.
    Pan, Z.
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2010, 10 (17) : 8173 - 8196
  • [5] Sensitivity of aerosol-cloud interactions to autoconversion schemes in mixed-phase orographic clouds
    Xiao, Hui
    Zhao, Pengguo
    Liu, Xiantong
    Li, Huiqi
    ATMOSPHERIC RESEARCH, 2021, 247
  • [6] Precipitation Susceptibility and Aerosol Buffering of Warm- and Mixed-Phase Orographic Clouds in Idealized Simulations
    Glassmeier, Franziska
    Lohmann, Ulrike
    JOURNAL OF THE ATMOSPHERIC SCIENCES, 2018, 75 (04) : 1173 - 1194
  • [7] Anthropogenic Aerosol Influences on Mixed-Phase Clouds
    Ulrike Lohmann
    Current Climate Change Reports, 2017, 3 : 32 - 44
  • [8] Aerosol partitioning in natural mixed-phase clouds
    Henning, S
    Bojinski, S
    Diehl, K
    Ghan, S
    Nyeki, S
    Weingartner, E
    Wurzler, S
    Baltensperger, U
    GEOPHYSICAL RESEARCH LETTERS, 2004, 31 (06)
  • [9] Anthropogenic Aerosol Influences on Mixed-Phase Clouds
    Lohmann, Ulrike
    CURRENT CLIMATE CHANGE REPORTS, 2017, 3 (01): : 32 - 44
  • [10] Simulation of the effects of aerosol on mixed-phase orographic clouds using the WRF model with a detailed bin microphysics scheme
    Xiao, Hui
    Yin, Yan
    Jin, Lianji
    Chen, Qian
    Chen, Jinghua
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2015, 120 (16) : 8345 - 8358