Analysis of the effect of experimental adsorption uncertainty on CH4 production and CO2 sequestration in Dadas shale gas reservoir by numerical simulations

被引:10
|
作者
Merey, Sukru [1 ]
机构
[1] Batman Univ, Dept Petr & Nat Gas Engn, TR-72100 Batman, Turkey
关键词
Dadas shale; Adsorption; Methane; Carbon dioxide; TOUGH plus RealGasBrine; METHANE ADSORPTION; HEAT-FLOW; FLUID; MECHANISMS; RECOVERY; MODEL; TEMPERATURE; NANOPORES; POROSITY; STORAGE;
D O I
10.1016/j.petrol.2019.04.022
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The importance of unconventional gas reservoirs such as shale gas reservoirs has increased with the decline of conventional gas reservoirs and advancement in horizontal drilling and hydraulic fracturing in the world. Recently, there have been many exploration activities in Dadas shales, Turkey. Previously, the adsorption capacifies of CH4 and CO2 on Dadas shale samples were measured by using volumetric adsorption experimental set-up. Although adsorption uncertainties of these experiments were calculated, their effects on CH4 production or CO2 sequestration in Dadas shales were not evaluated in field scale. In this study, the numerical simulations for CH4 gas production via 500 m long horizontal well from Dadas shale gas reservoir with different adsorption cases due to experimental adsorption uncertainties were conducted by using TOUGH + RealGasBrine. It was observed that initial CH4 adsorption capacity of Dadas shales varies from 2.1% to 20.9% because of experimental adsorption uncertainty and absorbed gas volume corrections. Numerical simulations showed initial adsorbed gas % and final adsorbed gas % vary significantly. Similarly, the injection of CO2 into the depleted Dadas shale gas reservoir was analyzed by numerical simulations at different adsorption cases due to experimental adsorption uncertainty and adsorbed gas volume correction. Final adsorbed CO2% varies from 18.1% to 27.5%. Furthermore, there are important differences in the amount of CO2 injected, final adsorbed CH4 % and final adsorbed CO2% during CO2 injection simulations. The main reasons of these differences are experimental adsorption uncertainty and adsorbed gas volume correction. This study showed that the volumetric adsorption experimental method is not reliable in low adsorption values as in Dadas shales. It only gives adsorption ranges. The implication of this study is that the effect of experimental adsorption uncertainty obtained with the volumetric adsorption method on CH4 production or CO2 sequestration in Dadas shale gas reservoir is significant in field scale.
引用
收藏
页码:1051 / 1066
页数:16
相关论文
共 50 条
  • [1] Adsorption kinetics of CH4 and CO2 on shale: Implication for CO2 sequestration
    Liao, Qi
    Zhou, Junping
    Zheng, Yi
    Xian, Xuefu
    Deng, Guangrong
    Zhang, Chengpeng
    Duan, Xianggang
    Wu, Zhenkai
    Li, Sensheng
    SEPARATION AND PURIFICATION TECHNOLOGY, 2024, 337
  • [2] Review of Competitive Adsorption of CO2/CH4 in Shale: Implications for CO2 Sequestration and Enhancing Shale Gas Recovery
    Cao, Mengyao
    Qin, Chao
    Jiang, Yongdong
    Xia, Peng
    Wang, Ke
    ACS OMEGA, 2025,
  • [3] Competition adsorption of CO2/CH4 in shale: Implications for CO2 sequestration with enhanced gas recovery
    Liao, Qi
    Zhou, Junping
    Xian, Xuefu
    Yang, Kang
    Zhang, Chengpeng
    Dong, Zhiqiang
    Yin, Hong
    FUEL, 2023, 339
  • [4] Molecular Simulation of CO2/CH4 Competitive Adsorption on Shale Kerogen for CO2 Sequestration and Enhanced Gas Recovery
    Wang, Tianyu
    Tian, Shouceng
    Li, Gensheng
    Sheng, Mao
    Ren, Wenxi
    Liu, Qingling
    Zhang, Shikun
    JOURNAL OF PHYSICAL CHEMISTRY C, 2018, 122 (30): : 17009 - 17018
  • [5] Investigation of CO2 and CH4 competitive adsorption during enhanced shale gas production
    Iddphonce, Raphael
    Wang, Jinjie
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2021, 205
  • [6] A review of gas adsorption on shale and the influencing factors of CH4 and CO2 adsorption
    Mudoi, Manash Protim
    Sharma, Pushpa
    Khichi, Abhimanyu Singh
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2022, 217
  • [7] Effects of gas components, reservoir property and pore structure of shale gas reservoir on the competitive adsorption behavior of CO2 and CH4
    Xie, Weidong
    Wang, Meng
    Chen, Si
    Vandeginste, Veerle
    Yu, Zhenghong
    Wang, Hua
    ENERGY, 2022, 254
  • [8] Molecular Simulation and Experimental Study on Adsorption Effect of CH4/CO2 in Shale Minerals
    Tian, Sen
    Bai, Ruyi
    Zhao, Ying
    Lu, Yiyu
    Chen, Jie
    Wu, Shuliang
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2023, 63 (01) : 818 - 832
  • [9] Experimental Study on the Kinetics of Adsorption of CO2 and CH4 in Gas-Bearing Shale Reservoirs
    Du, Xidong
    Gu, Min
    Hou, Zhenkun
    Liu, Zhenjian
    Wu, Tengfei
    ENERGY & FUELS, 2019, 33 (12) : 12587 - 12600
  • [10] Study on the adsorption of CH4, CO2 and various CH4/CO2 mixture gases on shale
    Du, Xidong
    Cheng, Yugang
    Liu, Zhenjian
    Hou, Zhenkun
    Wu, Tengfei
    Lei, Ruide
    Shu, Couxian
    ALEXANDRIA ENGINEERING JOURNAL, 2020, 59 (06) : 5165 - 5178