Numerical differentiation of noisy data with local optimum by data segmentation

被引:1
|
作者
Zhang, Jianhua [1 ,2 ]
Que, Xiufu [1 ,2 ]
Chen, Wei [1 ]
Huang, Yuanhao [1 ]
Yang, Lianqiao [1 ]
机构
[1] Shanghai Univ, Minist Educ, Key Lab Adv Display & Syst Applicat, Shanghai 200072, Peoples R China
[2] Shanghai Univ, Sch Mech & Elect Engn & Automat, Shanghai 200072, Peoples R China
关键词
numerical differentiation; noisy data; local optimum; data segmentation; FOURIER-TRANSFORM; B-SPLINES; MCMC;
D O I
10.1109/JSEE.2015.00094
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A new numerical differentiation method with local optimum by data segmentation is proposed. The segmentation of data is based on the second derivatives computed by a Fourier development method. A filtering process is used to achieve acceptable segmentation. Numerical results are presented by using the data segmentation method, compared with the regularization method. For further investigation, the proposed algorithm is applied to the resistance capacitance (RC) networks identification problem, and improvements of the result are obtained by using this algorithm.
引用
收藏
页码:868 / 876
页数:9
相关论文
共 50 条
  • [1] Numerical differentiation of noisy data with local optimum by data segmentation
    Jianhua Zhang
    Xiufu Que
    Wei Chen
    Yuanhao Huang
    Lianqiao Yang
    JournalofSystemsEngineeringandElectronics, 2015, 26 (04) : 868 - 876
  • [2] METHODS FOR NUMERICAL DIFFERENTIATION OF NOISY DATA
    Knowles, Ian
    Renka, Robert J.
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, : 235 - 246
  • [3] NUMERICAL DIFFERENTIATION OF NOISY, NONSMOOTH, MULTIDIMENSIONAL DATA
    Chartrand, Rick
    2017 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP 2017), 2017, : 244 - 248
  • [4] Numerical differentiation of 2D functions from noisy data
    Bozzini, M
    Rossini, M
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2003, 45 (1-3) : 309 - 327
  • [5] Numerical Differentiation of Noisy Data: A Unifying Multi-Objective Optimization Framework
    Van Breugel, Floris
    Kutz, J. Nathan
    Brunton, Bingni W.
    IEEE ACCESS, 2020, 8 : 196865 - 196877
  • [6] NUMERICAL DIFFERENTIATION OF DATA
    WHITE, JJ
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1972, 17 (02): : 193 - &
  • [7] NUMERICAL DIFFERENTIATION OF DATA
    WHITE, JJ
    AMERICAN JOURNAL OF PHYSICS, 1971, 39 (11) : 1397 - &
  • [8] Numerical differentiation of experimental data: local versus global methods
    Ahnert, Karsten
    Abel, Markus
    COMPUTER PHYSICS COMMUNICATIONS, 2007, 177 (10) : 764 - 774
  • [9] A Robust Local Data and Membership Information Based FCM algorithm for Noisy Image Segmentation
    Gharieb, R. R.
    Gendy, G.
    Abdelfattah, A.
    ICENCO 2016 - 2016 12TH INTERNATIONAL COMPUTER ENGINEERING CONFERENCE (ICENCO) - BOUNDLESS SMART SOCIETIES, 2016, : 93 - 98
  • [10] Almost optimal differentiation using noisy data
    Ritter, K
    JOURNAL OF APPROXIMATION THEORY, 1996, 86 (03) : 293 - 309