On positive functions with positive Fourier transforms

被引:0
|
作者
Giraud, BC [1 ]
Peschanski, R [1 ]
机构
[1] CE Saclay, DSM, Serv Phys Theor, F-91191 Gif Sur Yvette, France
来源
ACTA PHYSICA POLONICA B | 2006年 / 37卷 / 02期
关键词
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Using the basis of Hermite-Fourier functions (i.e. the quantum oscillator eigenstates) and the Sturm theorem, we derive constraints for a function and its Fourier transform to be both real and positive. We propose a constructive method based on the algebra of Hermite polynomials. Applications are extended to the 2-dimensional case (i.e. Fourier-Bessel transforms and the algebra of Laguerre polynomials) and to adding constraints on derivatives, such as monotonicity or convexity.
引用
收藏
页码:331 / 346
页数:16
相关论文
共 50 条