DENSITY OF PATHS OF ITERATED LEVY TRANSFORMS OF BROWNIAN MOTION

被引:2
|
作者
Malric, Marc
机构
关键词
Brownian motion; Levy transform; excursions; zeroes of Brownian motion; ergodicity;
D O I
10.1051/ps/2011020
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The Levy transform of a Brownian motion B is the Brownian motion B-(1) given by B-t((1)) = integral(t)(0)sgn(B-s) dB(s); call B-(n) the Brownian motion obtained from B by iterating n times this transformation. We establish that almost surely, the sequence of paths (t (sic) B-t((n)))(n >= 0) is dense in Wiener space, for the topology of uniform convergence on compact time intervals.
引用
收藏
页码:399 / 424
页数:26
相关论文
共 50 条