Note on the ascent of incidence class of projective sets

被引:1
|
作者
Vasarelli, Paolo [1 ]
机构
[1] Univ Aquila, Dept Ind & Informat Engn & Econ, Piazzale Ernesto Pontieri 1, I-67100 Laquila, Italy
关键词
Three character set; Baer subplane; Unital; Hyperoval; Maximal arc; PG(3;
D O I
10.1080/09720529.2020.1761044
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let H be a set of class [1, q + 1, q(2) + 1](1) in PG(r, q(2)), r >= 3, q a prime power. We establish the class of H with respect to the planes.
引用
收藏
页码:1101 / 1105
页数:5
相关论文
共 50 条
  • [1] The projective sets of the second class
    Kantorovitch, L
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES, 1929, 189 : 1233 - 1235
  • [2] A note on badly approximabe sets in projective space
    Harrap, Stephen
    Hussain, Mumtaz
    MATHEMATISCHE ZEITSCHRIFT, 2017, 285 (1-2) : 239 - 250
  • [3] A note on badly approximabe sets in projective space
    Stephen Harrap
    Mumtaz Hussain
    Mathematische Zeitschrift, 2017, 285 : 239 - 250
  • [4] Note on class incidence of cancer
    Heron, D
    BMJ-BRITISH MEDICAL JOURNAL, 1907, 1907 : 621 - 622
  • [5] A note on projective Levi flats and minimal sets of algebraic foliations
    Neto, AL
    ANNALES DE L INSTITUT FOURIER, 1999, 49 (04) : 1369 - +
  • [6] A NOTE ON THE GENERATING SETS FOR THE MAPPING CLASS GROUPS
    Dalyan, Elif
    Medetogullari, Elif
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2021, 70 (02): : 762 - 772
  • [7] A NOTE ON CANCELLATION LAW FOR SOME CLASS OF UNBOUNDED SETS
    Przybycien, Hubert
    PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2024, 116 (130): : 55 - 58
  • [8] Ascent and descent for sets of operators
    Kitson, Derek
    STUDIA MATHEMATICA, 2009, 191 (02) : 151 - 161
  • [9] Projective sets and operation (A)
    Kuratowski, C
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES, 1936, 203 : 911 - 913
  • [10] Projective Paley sets
    Cossidente, Antonio
    Marino, Giuseppe
    Pavese, Francesco
    JOURNAL OF COMBINATORIAL DESIGNS, 2019, 27 (10) : 598 - 613