Maximal Betti numbers

被引:6
|
作者
Chardin, M [1 ]
Gasharov, V
Peeva, I
机构
[1] Univ Paris 06, Inst Math, CNRS, UMR 7586, F-75252 Paris, France
[2] Cornell Univ, Dept Math, Ithaca, NY 14850 USA
关键词
D O I
10.1090/S0002-9939-02-06471-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We provide a short proof that the lexicographic ideal has the greatest Betti numbers among all graded ideals with a fixed Hilbert function.
引用
收藏
页码:1877 / 1880
页数:4
相关论文
共 50 条
  • [1] Deformation classes of graded modules and maximal Betti numbers
    Pardue, K
    ILLINOIS JOURNAL OF MATHEMATICS, 1996, 40 (04) : 564 - 585
  • [2] Componentwise linear ideals with minimal or maximal Betti numbers
    Herzog, Juergen
    Hibi, Takayuki
    Murai, Satoshi
    Takayama, Yukihide
    ARKIV FOR MATEMATIK, 2008, 46 (01): : 69 - 75
  • [3] Hilbert schemes and maximal Betti numbers over veronese rings
    Vesselin Gasharov
    Satoshi Murai
    Irena Peeva
    Mathematische Zeitschrift, 2011, 267 : 155 - 172
  • [4] Hilbert schemes and maximal Betti numbers over veronese rings
    Gasharov, Vesselin
    Murai, Satoshi
    Peeva, Irena
    MATHEMATISCHE ZEITSCHRIFT, 2011, 267 (1-2) : 155 - 172
  • [5] Reduced arithmetically Gorenstein schemes and simplicial polytopes with maximal Betti numbers
    Migliore, J
    Nagel, U
    ADVANCES IN MATHEMATICS, 2003, 180 (01) : 1 - 63
  • [6] Maximal Betti numbers of Cohen–Macaulay complexes with a given f-vector
    Satoshi Murai
    Takayuki Hibi
    Archiv der Mathematik, 2007, 88 : 507 - 512
  • [7] Maximal Betti numbers of Cohen-Macaulay complexes with a given f-vector
    Murai, Satoshi
    Hibi, Takayuki
    ARCHIV DER MATHEMATIK, 2007, 88 (06) : 507 - 512
  • [8] BETTI NUMBERS ARE TESTABLE
    Elek, Gabor
    FETE OF COMBINATORICS AND COMPUTER SCIENCE, 2010, 20 : 139 - 149
  • [9] COVERINGS AND BETTI NUMBERS
    ECKMANN, B
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1948, 54 (07) : 645 - 645
  • [10] CURVATURE AND BETTI NUMBERS
    BOCHNER, S
    ANNALS OF MATHEMATICS, 1948, 49 (02) : 379 - 390