Universally Koszul and initially Koszul properties of Orlik-Solomon algebras

被引:1
|
作者
Phong Dinh Thieu [1 ]
机构
[1] Vinh Univ, Dept Math, 182 Le Dean, Vinh City, Vietnam
关键词
Koszul algebra; Orlik-Solomon algebra; Grobner base; supersolvable arrangement; linear resolution; BROKEN CIRCUIT COMPLEXES; LOWER CENTRAL SERIES; ARRANGEMENTS; RESOLUTIONS; COHOMOLOGY;
D O I
10.1142/S0219498820502187
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let K be a field with char(K) = 0 and E = K < e(1), ..., e(n)> an exterior algebra over K with a standard grading deg e(i) = 1. Let R = E/J be a graded algebra, where J is a graded ideal in E. in this paper, we study universally Koszul and initially Koszul properties of R and find classes of ideals J which characterize such properties of R. As applications, we classify arrangements whose Orlik-Solomon algebras are universally Koszul or initially Koszul. These results are related to a long-standing question of Shelton-Yuzvinsky [B. Shelton and S. Yuzvinsky, Koszul algebras from graphs and hyperplane arrangements, J. London Math. Soc. 56 (1997) 477-490].
引用
收藏
页数:21
相关论文
共 50 条