Simplex-inspired algorithms for solving a class of convex programming problems

被引:1
|
作者
Sharkey, Thomas C. [1 ]
Romeijn, H. Edwin [1 ]
机构
[1] Univ Florida, Dept Ind & Syst Engn, Gainesville, FL 32611 USA
基金
美国国家科学基金会;
关键词
Convex optimization; Simplex method; Nonlinear programming;
D O I
10.1007/s11590-007-0073-2
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We consider a class of convex programming problems whose objective function is given as a linear function plus a convex function whose arguments are linear functions of the decision variables and whose feasible region is a polytope. We show that there exists an optimal solution to this class of problems on a face of the constraint polytope of dimension not more than the number of arguments of the convex function. Based on this result, we develop a method to solve this problem that is inspired by the simplex method for linear programming. It is shown that this method terminates in a finite number of iterations in the special case that the convex function has only a single argument. We then use this insight to develop a second algorithm that solves the problem in a finite number of iterations for an arbitrary number of arguments in the convex function. A computational study illustrates the efficiency of the algorithm and suggests that the average-case performance of these algorithms is a polynomial of low order in the number of decision variables.
引用
收藏
页码:455 / 481
页数:27
相关论文
共 50 条