Proper generalized decomposition solutions within a domain decomposition strategy

被引:20
|
作者
Huerta, Antonio [1 ]
Nadal, Enrique [2 ]
Chinesta, Francisco [3 ]
机构
[1] Univ Politecn Cataluna, Escuela Tecn Super Ingn Caminos Canales & Puertos, Lab Calcul Numer LaCaN, Jordi Girona 1, ES-08034 Barcelona, Spain
[2] Univ Politecn Valencia, Dept Ingn Mecan & Mat, Ctr Invest Ingn Mecan, Valencia, Spain
[3] Ecole Natl Arts & Metiers ENSAM, ESI Grp Int Chair, Lab Proc & Ingn Mecan & Mat PIMM, Paris, France
关键词
domain decomposition; parameterized solutions; proper generalized decomposition; reduced-order models; BASIS ELEMENT METHOD; SQUEEZE FLOWS; APPROXIMATION;
D O I
10.1002/nme.5729
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Domain decomposition strategies and proper generalized decomposition are efficiently combined to obtain a fast evaluation of the solution approximation in parameterized elliptic problems with complex geometries. The classical difficulties associated to the combination of layered domains with arbitrarily oriented midsurfaces, which may require in-plane-out-of-plane techniques, are now dismissed. More generally, solutions on large domains can now be confronted within a domain decomposition approach. This is done with a reduced cost in the offline phase because the proper generalized decomposition gives an explicit description of the solution in each subdomain in terms of the solution at the interface. Thus, the evaluation of the approximation in each subdomain is a simple function evaluation given the interface values (and the other problem parameters). The interface solution can be characterized by any a priori user-defined approximation. Here, for illustration purposes, hierarchical polynomials are used. The repetitiveness of the subdomains is exploited to reduce drastically the offline computational effort. The online phase requires solving a nonlinear problem to determine all the interface solutions. However, this problem only has degrees of freedom on the interfaces and the Jacobian matrix is explicitly determined. Obviously, other parameters characterizing the solution (material constants, external loads, and geometry) can also be incorporated in the explicit description of the solution.
引用
收藏
页码:1972 / 1994
页数:23
相关论文
共 50 条
  • [1] Multiparametric analysis within the proper generalized decomposition framework
    Heyberger, Christophe
    Boucard, Pierre-Alain
    Neron, David
    COMPUTATIONAL MECHANICS, 2012, 49 (03) : 277 - 289
  • [2] Multiparametric analysis within the proper generalized decomposition framework
    Christophe Heyberger
    Pierre-Alain Boucard
    David Néron
    Computational Mechanics, 2012, 49 : 277 - 289
  • [3] Elastic calibration of a discrete domain using a proper generalized decomposition
    Girardot, J.
    Pruliere, E.
    COMPUTATIONAL PARTICLE MECHANICS, 2021, 8 (04) : 993 - 1000
  • [4] Elastic calibration of a discrete domain using a proper generalized decomposition
    J. Girardot
    E. Prulière
    Computational Particle Mechanics, 2021, 8 : 993 - 1000
  • [5] Local Proper Generalized Decomposition
    Badias, A.
    Gonzalez, D.
    Alfaro, I.
    Chinesta, F.
    Cueto, E.
    PROCEEDINGS OF THE 20TH INTERNATIONAL ESAFORM CONFERENCE ON MATERIAL FORMING (ESAFORM 2017), 2017, 1896
  • [6] Local proper generalized decomposition
    Badias, Alberto
    Gonzalez, David
    Alfaro, Iciar
    Chinesta, Francisco
    Cueto, Elias
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2017, 112 (12) : 1715 - 1732
  • [7] An overlapping domain decomposition method for the solution of parametric elliptic problems via proper generalized decomposition
    Discacciati, Marco
    Evans, Ben J.
    Giacomini, Matteo
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2024, 418
  • [8] Error estimation for proper generalized decomposition solutions: A dual approach
    Reis, Jonatha
    Moitinho de Almeida, J. P.
    Diez, Pedro
    Zlotnik, Sergio
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2020, 121 (23) : 5275 - 5294
  • [9] A proper generalized decomposition strategy for dynamic data driven application systems
    Masson, F.
    Gonzalez, D.
    Cueto, E.
    Chinesta, F.
    REVISTA INTERNACIONAL DE METODOS NUMERICOS PARA CALCULO Y DISENO EN INGENIERIA, 2013, 29 (02): : 104 - 113
  • [10] Proper generalized decomposition solutions for composite laminates parametrized with fibre orientations
    El-Ghamrawy, K.
    Zlotnik, S.
    Auricchio, F.
    Diez, P.
    COMPUTATIONAL MECHANICS, 2023, 71 (01) : 89 - 105