Microsecond simulations of mdm2 and its complex with p53 yield insight into force field accuracy and conformational dynamics

被引:19
|
作者
Pantelopulos, George A. [1 ]
Mukherjee, Sudipto [1 ]
Voelz, Vincent A. [1 ]
机构
[1] Temple Univ, Dept Chem, Philadelphia, PA 19122 USA
基金
美国国家科学基金会;
关键词
molecular dynamics; chemical shift prediction; MDM2 lid region; protein binding; receptor flexibility; STRUCTURE-BASED DESIGN; CHEMICAL-SHIFTS; FOLDING SIMULATIONS; POTENT INHIBITORS; RATIONAL DESIGN; BINDING MODES; AMG; 232; PROTEINS; PEPTIDE; PREDICTION;
D O I
10.1002/prot.24852
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The p53-MDM2 complex is both a major target for cancer drug development and a valuable model system for computational predictions of protein-ligand binding. To investigate the accuracy of molecular simulations of MDM2 and its complex with p53, we performed a number of long (200 ns to 1 mu s) explicit-solvent simulations using a range of force fields. We systematically compared nine popular force fields (AMBER ff03, ff12sb, ff14sb, ff99sb, ff99sb-ildn, ff99sb-ildn-nmr, ff99sb-ildn-phi, CHARMM22*, and CHARMM36) against experimental chemical shift data, and found similarly accurate results, with microsecond simulations achieving better agreement compared to 200-ns trajectories. Although the experimentally determined apo structure has a closed binding cleft, simulations in all force fields suggest the apo state of MDM2 is highly flexible, and able to sample holo-like conformations, consistent with a conformational selection model. Initial structuring of the MDM2 lid region, known to competitively bind the binding cleft, is also observed in long simulations. Taken together, these results show molecular simulations can accurately sample conformations relevant for ligand binding. We expect this study to inform future computational work on folding and binding of MDM2 ligands. Proteins 2015; 83:1665-1676. (c) 2015 Wiley Periodicals, Inc.
引用
收藏
页码:1665 / 1676
页数:12
相关论文
共 50 条
  • [1] Inorganic arsenic induces MDM2, p53, and their phosphorylation and affects the MDM2/p53 complex in vitro
    Yin, Jinyao
    Zhou, Qian
    Tan, Jingwen
    Che, Wangjun
    He, Yuefeng
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2022, 29 (58) : 88078 - 88088
  • [2] Inorganic arsenic induces MDM2, p53, and their phosphorylation and affects the MDM2/p53 complex in vitro
    Jinyao Yin
    Qian Zhou
    Jingwen Tan
    Wangjun Che
    Yuefeng He
    Environmental Science and Pollution Research, 2022, 29 : 88078 - 88088
  • [3] Heterogeneous Hydration of p53/MDM2 Complex
    Guo, Zuojun
    Li, Bo
    Dzubiella, Joachim
    Cheng, Li-Tien
    McCammon, J. Andrew
    Che, Jianwei
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2014, 10 (03) : 1302 - 1313
  • [4] The p53–Mdm2–HAUSP complex is involved in p53 stabilization by HAUSP
    C L Brooks
    M Li
    M Hu
    Y Shi
    W Gu
    Oncogene, 2007, 26 : 7262 - 7266
  • [5] P53 Mdm2 Inhibitors
    Khoury, Kareem
    Doemling, Alex
    CURRENT PHARMACEUTICAL DESIGN, 2012, 18 (30) : 4668 - 4678
  • [6] MDM2与p53
    金晶
    刘耕陶
    癌症, 2001, (06) : 663 - 666
  • [7] MDM2 and BCL-2: to p53 or not to p53?
    Wang, Eunice S.
    BLOOD, 2023, 141 (11) : 1237 - 1238
  • [8] Binding of an inhibitor of the p53/MDM2 interaction to MDM2
    Duncan, SJ
    Cooper, MA
    Williams, DH
    CHEMICAL COMMUNICATIONS, 2003, (03) : 316 - 317
  • [9] p53 mediated death of cells overexpressing MDM2 by an inhibitor of MDM2 interaction with p53
    Christine Wasylyk
    Roberto Salvi
    Manuela Argentini
    Christine Dureuil
    Isabelle Delumeau
    Joseph Abecassis
    Laurent Debussche
    Bohdan Wasylyk
    Oncogene, 1999, 18 : 1921 - 1934
  • [10] p53 mediated death of cells overexpressing MDM2 by an inhibitor of MDM2 interaction with p53
    Wasylyk, C
    Salvi, R
    Argentini, M
    Dureuil, C
    Delumeau, I
    Abecassis, J
    Debussche, L
    Wasylyk, B
    ONCOGENE, 1999, 18 (11) : 1921 - 1934