An Operational High Resolution Soil Moisture Retrieval Algorithm Using Sentinel-1 Images

被引:0
|
作者
Baghdadi, Nicolas [1 ]
El Hajj, Mohammad [1 ]
Zribi, Mehrez [2 ]
机构
[1] Univ Montpellier, IRSTEA, TETIS, F-34090 Montpellier, France
[2] CESBIO CNRS UPS IRD CNES, F-31401 Toulouse 9, France
来源
2019 PHOTONICS & ELECTROMAGNETICS RESEARCH SYMPOSIUM - SPRING (PIERS-SPRING) | 2019年
关键词
TERRASAR-X DATA; INTEGRAL-EQUATION MODEL; SAR DATA; C-BAND; SURFACE-ROUGHNESS; CALIBRATION; PARAMETERS; SENSITIVITY; CATCHMENTS;
D O I
10.1109/piers-spring46901.2019.9017477
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Monitoring the surface soil moisture (SSM) in agricultural areas at plot scale helps in many applications such as irrigation planning and crop management. Over the last decade, SAR (Synthetic Aperture Radar) data have shown great potential in the estimation SSM in agriculture areas. Today, Sentinel-1 (S1) and Sentinel-2 (S2) satellites present a good opportunity for operational SSM estimates in agricultural areas because they provide free and open access data at high spatial resolution (10 m x 10 m) and high revisit time (6 days over Europe). The aim of this communication is to present an operational approach for mapping soil moisture at high spatial resolution (plot scale) in agriculture areas by coupling S1 and S2 images. The proposed approach is based on the inversion of the Water Cloud Model (WCM) combined with the modified Integral Equation Model (IEM). Neural networks were developed and validated using synthetic SAR C-band database. The results showed that the soil moisture could be estimated in agricultural areas with an accuracy of approximately 5 vol.%.
引用
收藏
页码:4086 / 4092
页数:7
相关论文
共 50 条
  • [1] SMOSAR ALGORITHM FOR SOIL MOISTURE RETRIEVAL USING SENTINEL-1 DATA
    Balenzano, Anna
    Mattia, Francesco
    Satalino, Giuseppe
    Pauwels, Valentijn
    Snoeij, Paul
    2012 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2012, : 1200 - 1203
  • [2] SENTINEL-1 HIGH RESOLUTION SOIL MOISTURE
    Mattia, F.
    Balenzano, A.
    Satalino, G.
    Lovergine, F.
    Loew, A.
    Peng, J.
    Wegmuller, U.
    Santoro, M.
    Cartus, O.
    Dabrowska-Zielinska, K.
    Musial, J.
    Davidson, M. W. J.
    Yueh, S.
    Kim, S.
    Das, N.
    Colliander, A.
    Johnson, J.
    Ouellette, J.
    Walker, J.
    Wu, X.
    McNairn, H.
    Merzouki, A.
    Powers, J.
    Caldwell, T.
    Entekhabi, D.
    Cosh, M.
    Jackson, T.
    2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 5533 - 5536
  • [3] Soil Moisture Retrieval in Bare Agricultural Areas Using Sentinel-1 Images
    Ettalbi, Mouad
    Baghdadi, Nicolas
    Garambois, Pierre-Andre
    Bazzi, Hassan
    Ferreira, Emmanuel
    Zribi, Mehrez
    REMOTE SENSING, 2023, 15 (14)
  • [4] Soil moisture mapping using Sentinel-1 images: Algorithm and preliminary validation
    Paloscia, S.
    Pettinato, S.
    Santi, E.
    Notarnicola, C.
    Pasolli, L.
    Reppucci, A.
    REMOTE SENSING OF ENVIRONMENT, 2013, 134 : 234 - 248
  • [5] COUPLING SENTINEL-1 AND SENTINEL-2 IMAGES FOR OPERATIONAL SOIL MOISTURE MAPPING
    El Hajj, Mohammad
    Baghdadi, Nicolas
    Zribi, Mehrez
    Bazzi, Hassan
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 5537 - 5540
  • [6] Retrieval of High-Resolution Soil Moisture through Combination of Sentinel-1 and Sentinel-2 Data
    Ma, Chunfeng
    Li, Xin
    McCabe, Matthew F.
    REMOTE SENSING, 2020, 12 (14)
  • [7] Synergic Use of Sentinel-1 and Sentinel-2 Images for Operational Soil Moisture Mapping at High Spatial Resolution over Agricultural Areas
    El Hajj, Mohammad
    Baghdadi, Nicolas
    Zribi, Mehrez
    Bazzi, Hassan
    REMOTE SENSING, 2017, 9 (12)
  • [8] ESTIMATION OF SOIL MOISTURE USING SENTINEL-1 AND SENTINEL-2 IMAGES
    Sarteshnizi, R. Esmaeili
    Vayghan, S. Sahebi
    Jazirian, I.
    ISPRS GEOSPATIAL CONFERENCE 2022, JOINT 6TH SENSORS AND MODELS IN PHOTOGRAMMETRY AND REMOTE SENSING, SMPR/4TH GEOSPATIAL INFORMATION RESEARCH, GIRESEARCH CONFERENCES, VOL. 10-4, 2023, : 137 - 142
  • [9] SOIL MOISTURE RETRIEVAL USING SENTINEL-1 DATA BASED ON RESNEXT
    Li, Tianyang
    Zhang, Hong
    Wang, Chao
    Xu, Lu
    Wu, Fan
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 3194 - 3197
  • [10] SENTINEL-1 FOR WHEAT MAPPING AND SOIL MOISTURE RETRIEVAL
    Mattia, F.
    Satalino, G.
    Balenzano, A.
    Rinaldi, M.
    Steduto, P.
    Moreno, J.
    2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 2832 - 2835