DNA-nanoparticle assemblies go organic: Macroscopic polymeric materials with nanosized features
被引:4
|
作者:
Mentovich, Elad D.
论文数: 0引用数: 0
h-index: 0
机构:
Tel Aviv Univ, Fac Exact Sci, IL-69978 Tel Aviv, Israel
Tel Aviv Univ, Ctr Nanosci & Nanotechnol, IL-69978 Tel Aviv, IsraelTel Aviv Univ, Fac Exact Sci, IL-69978 Tel Aviv, Israel
Mentovich, Elad D.
[1
,2
]
Livanov, Konstantin
论文数: 0引用数: 0
h-index: 0
机构:
Tel Aviv Univ, Fac Exact Sci, IL-69978 Tel Aviv, Israel
Tel Aviv Univ, Ctr Nanosci & Nanotechnol, IL-69978 Tel Aviv, IsraelTel Aviv Univ, Fac Exact Sci, IL-69978 Tel Aviv, Israel
Livanov, Konstantin
[1
,2
]
Prusty, Deepak K.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Groningen, Zernike Inst Adv Mat, NL-9747 AG Groningen, NetherlandsTel Aviv Univ, Fac Exact Sci, IL-69978 Tel Aviv, Israel
Prusty, Deepak K.
[3
]
Sowwan, Mukules
论文数: 0引用数: 0
h-index: 0
机构:
Al Quds Univ, Dept Mat Engn, Nanotechnol Res Lab, Jerusalem, IsraelTel Aviv Univ, Fac Exact Sci, IL-69978 Tel Aviv, Israel
Sowwan, Mukules
[4
]
Richter, Shachar
论文数: 0引用数: 0
h-index: 0
机构:
Tel Aviv Univ, Fac Exact Sci, IL-69978 Tel Aviv, Israel
Tel Aviv Univ, Ctr Nanosci & Nanotechnol, IL-69978 Tel Aviv, IsraelTel Aviv Univ, Fac Exact Sci, IL-69978 Tel Aviv, Israel
Richter, Shachar
[1
,2
]
机构:
[1] Tel Aviv Univ, Fac Exact Sci, IL-69978 Tel Aviv, Israel
[2] Tel Aviv Univ, Ctr Nanosci & Nanotechnol, IL-69978 Tel Aviv, Israel
Background: One of the goals in the field of structural DNA nanotechnology is the use of DNA to build up 2- and 3-D nanostructures. The research in this field is motivated by the remarkable structural features of DNA as well as by its unique and reversible recognition properties. Nucleic acids can be used alone as the skeleton of a broad range of periodic nanopatterns and nanoobjects and in addition, DNA can serve as a linker or template to form DNA-hybrid structures with other materials. This approach can be used for the development of new detection strategies as well as nanoelectronic structures and devices. Method: Here we present a new method for the generation of unprecedented all-organic conjugated-polymer nanoparticle networks guided by DNA, based on a hierarchical self-assembly process. First, microphase separation of amphiphilic block copolymers induced the formation of spherical nanoobjects. As a second ordering concept, DNA base pairing has been employed for the controlled spatial definition of the conjugated-polymer particles within the bulk material. These networks offer the flexibility and the diversity of soft polymeric materials. Thus, simple chemical methodologies could be applied in order to tune the network's electrical, optical and mechanical properties. Results and conclusions: One-two-and three-dimensional networks have been successfully formed. Common to all morphologies is the integrity of the micelles consisting of DNA block copolymer (DBC), which creates an all-organic engineered network.