Nonlocal homogenization model for a periodic array of ε-negative rods

被引:188
|
作者
Silveirinha, MG [1 ]
机构
[1] Univ Coimbra, Dept Eng Electrotecn, Inst Telecomunicacoes, P-3030 Coimbra, Portugal
来源
PHYSICAL REVIEW E | 2006年 / 73卷 / 04期
关键词
D O I
10.1103/PhysRevE.73.046612
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We propose an effective permittivity model to homogenize an array of long thin epsilon-negative rods arranged in a periodic lattice. It is proven that the effect of spatial dispersion in this electromagnetic crystal cannot be neglected, and that the medium supports dispersionless modes that guide the energy along the rod axes. It is suggested that this effect may be used to achieve subwavelength imaging at the infrared and optical domains. The reflection problem is studied in detail for the case in which the rods are parallel to the interfaces. Full wave numerical simulations demonstrate the validity and accuracy of the new model.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] A nonlocal model of materials with periodic microstructure based on asymptotic homogenization method
    Yuan, X
    Tomita, Y
    MATERIALS SCIENCE RESEARCH INTERNATIONAL, 2001, 7 (02): : 82 - 89
  • [2] NONLOCAL HOMOGENIZATION FOR DEGENERATE EQUATIONS WITH PERIODIC COEFFICIENTS
    AMIRAT, Y
    HAMDACHE, K
    ZIANI, A
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1991, 312 (13): : 963 - 966
  • [3] Corrected Drude model of thin circle metal rods' periodic array
    Dong, Yanzhang
    Liu, Shutian
    Li, Xin
    WAVES IN RANDOM AND COMPLEX MEDIA, 2017, 27 (03) : 562 - 570
  • [4] Nonlocal Homogenization Model for Wave Dispersion and Attenuation in Elastic and Viscoelastic Periodic Layered Media
    Hu, Ruize
    Oskay, Caglar
    JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 2017, 84 (03):
  • [5] Nonlocal Homogenization Model for Wave Dispersion and Attenuation in Elastic and Viscoelastic Periodic Layered Media
    Hu, Ruize
    Oskay, Caglar
    Journal of Applied Mechanics, Transactions ASME, 2017, 84 (03):
  • [6] Homogenization of a thin plate reinforced with periodic families of rigid rods
    Nazarov, S. A.
    Sweers, G. H.
    Slutskij, A. S.
    SBORNIK MATHEMATICS, 2011, 202 (08) : 1127 - 1168
  • [7] Exceptional points in periodic array of silicon rods
    Shadrina, Galina
    Bulgakov, Evgeny
    Sadreev, Almas
    Pichugin, Konstantin
    APPLIED PHYSICS LETTERS, 2023, 123 (21)
  • [8] Homogenization of nonlinear nonlocal diffusion equation with periodic and stationary structure
    Chen, Junlong
    Tang, Yanbin
    NETWORKS AND HETEROGENEOUS MEDIA, 2023, 18 (03) : 1118 - 1177
  • [9] PERIODIC HOMOGENIZATION OF NONLOCAL OPERATORS WITH A CONVOLUTION-TYPE KERNEL
    Piatnitski, A.
    Zhizhina, E.
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2017, 49 (01) : 64 - 81
  • [10] Nonlocal homogenization of an array of cubic particles made of resonant rings
    Department of Electrical Engineering - Instituto de Telecomunicações, University of Coimbra, 3030 Coimbra, Portugal
    不详
    不详
    Metamaterials, 2009, 3-4 (115-128): : 115 - 128