Apportionment of Primary and Secondary Organic Aerosols in Southern California during the 2005 Study of Organic Aerosols in Riverside (SOAR-1)

被引:217
|
作者
Docherty, Kenneth S. [1 ,3 ]
Stone, Elizabeth A. [4 ]
Ulbrich, Ingrid M. [1 ,3 ]
DeCarlo, Peter F. [1 ,2 ]
Snyder, David C. [4 ]
Schauer, James J. [4 ]
Peltier, Richard E. [5 ]
Weber, Rodney J. [5 ]
Murphy, Shane M. [6 ]
Seinfeld, John H. [6 ]
Grover, Brett D. [7 ]
Eatough, Delbert J. [7 ]
Jimenez, Jose L. [1 ,3 ]
机构
[1] Univ Colorado, NOAA, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA
[2] Univ Colorado, Dept Atmospher & Ocean Sci, Boulder, CO 80309 USA
[3] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA
[4] Univ Wisconsin, Environm Chem & Technol Program, Madison, WI USA
[5] Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA
[6] CALTECH, Div Chem & Chem Engn, Pasadena, CA 91125 USA
[7] Brigham Young Univ, Dept Chem & Biochem, Provo, UT 84602 USA
基金
美国国家科学基金会;
关键词
D O I
10.1021/es8008166
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Ambient sampling was conducted in Riverside, California during the 2005 Study of Organic Aerosols in Riverside to characterize the composition and sources of organic aerosol using a variety of state-of-the-art instrumentation and source apportionment techniques. The secondary organic aerosol (SOA) mass is estimated by elemental carbon and carbon monoxide tracer methods, water soluble organic carbon content, chemical mass balance of organic molecular markers, and positive matrix factorization of high-resolution aerosol mass spectrometer data. Estimates obtained from each of these methods indicate that the organic fraction in ambient aerosol is overwhelmingly secondary in nature during a period of several weeks with moderate ozone concentrations and that SOA is the single largest component of PM1 aerosol in Riverside.. Average SOA/OA contributions of 70-90% were observed during midday periods, whereas minimum SOA contributions of similar to 45% were observed during peak morning traffic periods. These results are contrary to previous estimates of SOA throughout the Los Angeles Basin which reported that, other than during severe photochemical smog episodes, SOA was lower than primary OA. Possible reasons for these differences are discussed.
引用
收藏
页码:7655 / 7662
页数:8
相关论文
共 50 条
  • [1] The 2005 Study of Organic Aerosols at Riverside (SOAR-1): instrumental intercomparisons and fine particle composition
    Docherty, K. S.
    Aiken, A. C.
    Huffman, J. A.
    Ulbrich, I. M.
    DeCarlo, P. F.
    Sueper, D.
    Worsnop, D. R.
    Snyder, D. C.
    Peltier, R. E.
    Weber, R. J.
    Grover, B. D.
    Eatough, D. J.
    Williams, B. J.
    Goldstein, A. H.
    Ziemann, P. J.
    Jimenez, J. L.
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2011, 11 (23) : 12387 - 12420
  • [2] Source apportionment of 1 h semi-continuous data during the 2005 Study of Organic Aerosols in Riverside (SOAR) using positive matrix factorization
    Eatough, Delbert J.
    Grover, Brett D.
    Woolwine, Woods R.
    Eatough, Norman L.
    Long, Russell
    Farber, Robert
    ATMOSPHERIC ENVIRONMENT, 2008, 42 (11) : 2706 - 2719
  • [3] PRIMARY AND SECONDARY ORGANIC AEROSOLS
    Facchini, Maria Cristina
    Finessi, Emanuela
    Decesari, Stefano
    Fuzzi, Sandro
    EQA-INTERNATIONAL JOURNAL OF ENVIRONMENTAL QUALITY, 2010, 3 : 15 - 20
  • [4] Modeling organic aerosols during MILAGRO: importance of biogenic secondary organic aerosols
    Hodzic, A.
    Jimenez, J. L.
    Madronich, S.
    Aiken, A. C.
    Bessagnet, B.
    Curci, G.
    Fast, J.
    Lamarque, J. -F.
    Onasch, T. B.
    Roux, G.
    Schauer, J. J.
    Stone, E. A.
    Ulbrich, I. M.
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2009, 9 (18) : 6949 - 6981
  • [5] Modeling organic aerosols during MILAGRO: importance of biogenic secondary organic aerosols
    Hodzic, Alma
    Jimenez, J. L.
    Madronich, S.
    Aiken, A. C.
    Bessagnet, B.
    Curci, G.
    Fast, J.
    Onasch, T. B.
    Roux, G.
    Ulbrich, I. M.
    GEOCHIMICA ET COSMOCHIMICA ACTA, 2009, 73 (13) : A537 - A537
  • [6] First measurements of source apportionment of organic aerosols in the Southern Hemisphere
    Crilley, Leigh R.
    Ayoko, Godwin A.
    Morawska, Lidia
    ENVIRONMENTAL POLLUTION, 2014, 184 : 81 - 88
  • [7] Evaluating simulated primary anthropogenic and biomass burning organic aerosols during MILAGRO: implications for assessing treatments of secondary organic aerosols
    Fast, J.
    Aiken, A. C.
    Allan, J.
    Alexander, L.
    Campos, T.
    Canagaratna, M. R.
    Chapman, E.
    DeCarlo, P. F.
    de Foy, B.
    Gaffney, J.
    de Gouw, J.
    Doran, J. C.
    Emmons, L.
    Hodzic, A.
    Herndon, S. C.
    Huey, G.
    Jayne, J. T.
    Jimenez, J. L.
    Kleinman, L.
    Kuster, W.
    Marley, N.
    Russell, L.
    Ochoa, C.
    Onasch, T. B.
    Pekour, M.
    Song, C.
    Ulbrich, I. M.
    Warneke, C.
    Welsh-Bon, D.
    Wiedinmyer, C.
    Worsnop, D. R.
    Yu, X. -Y.
    Zaveri, R.
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2009, 9 (16) : 6191 - 6215
  • [8] Source apportionment of secondary organic aerosols in the Pearl River Delta region: Contribution from the oxidation of semi-volatile and intermediate volatility primary organic aerosols
    Yao, Teng
    Li, Ying
    Gao, Jinhui
    Fung, Jimmy C. H.
    Wang, Siyuan
    Li, Yongjie
    Chan, Chak K.
    Lau, Alexis K. H.
    ATMOSPHERIC ENVIRONMENT, 2020, 222
  • [9] Primary and secondary organic aerosols in summer 2016 in Beijing
    Tang, Rongzhi
    Wu, Zepeng
    Li, Xiao
    Wang, Yujue
    Shang, Dongjie
    Xiao, Yao
    Li, Mengren
    Zeng, Limin
    Wu, Zhijun
    Hallquist, Mattias
    Hu, Min
    Guo, Song
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2018, 18 (06) : 4055 - 4068
  • [10] Mixing and phase partitioning of primary and secondary organic aerosols
    Asa-Awuku, A.
    Miracolo, M. A.
    Kroll, J. H.
    Robinson, A. L.
    Donahue, N. M.
    GEOPHYSICAL RESEARCH LETTERS, 2009, 36