A model of tissue-engineered ventral hernia repair

被引:11
|
作者
Fann, SA
Terracio, L
Yan, WT
Franchini, JL
Yost, MJ [1 ]
机构
[1] Univ S Carolina, Sch Med, Dept Surg, Columbia, SC 29208 USA
[2] NYU, Coll Dent, New York, NY USA
关键词
hernia repair; skeletal muscle; tissue engineering;
D O I
10.1080/08941930600674736
中图分类号
R61 [外科手术学];
学科分类号
摘要
We have developed a tissue-engineered ventral hernia repair system using our novel aligned collagen tube and autologous skeletal muscle satellite cells. In this model system, skeletal muscle satellite cells were isolated from a biopsy, expanded in culture, and incorporated into our collagen tube scaffold, forming the tissue-engineered construct. We characterized the results of the repaired hernias on both the gross and microscopic scales and compared them to an unrepaired control, an autologous muscle repair control, and a collagen-tube-only repair. Untreated animals developed a classic hernia sac, devoid of abdominal muscle and covered only with a thin layer of mesothelial tissue. Significant muscle, small-diameter blood vessels, and connective tissue were apparent in both the autologous control and the engineered muscle repairs. The engineered muscle repairs became cellularized, vascularized, and integrated with the native tissue, hence becoming a "living" repair. A tissue-engineered construct repair of ventral hernias with subsequent incorporation and vascularization could provide the ultimate in anterior wall myofascial defect repair and would further the understanding of striated muscle engineering. The knowledge gained from our model system would have immediate application to mangled extremities, maxillofacial reconstructions, and restorative procedures following tumor excision in other areas of the body.
引用
收藏
页码:193 / 205
页数:13
相关论文
共 50 条
  • [1] Tissue-Engineered Cellular Neotendinous Constructs for Hernia Repair in a Rat
    Mahalingam, V. D.
    VanDusen, K. W.
    Myers, A. M.
    Arruda, E. M.
    Larkin, L. M.
    Kuzon, W. M.
    TISSUE ENGINEERING PART A, 2016, 22 : S120 - S120
  • [2] TISSUE-ENGINEERED CARTILAGE REPAIR IN AN EXPERIMENTAL MODEL
    Robla Costales, D.
    Meana Infiesta, A.
    Alvarez Garcia, R.
    Robla Costales, J.
    BRITISH JOURNAL OF SURGERY, 2013, 100 : 17 - 18
  • [3] An in vitro tissue-engineered model for osteochondral repair
    Peretti G.M.
    Buragas M.
    Scotti C.
    Mangiavini L.
    Sosio C.
    Giancamillo A.
    Domeneghini C.
    Fraschini G.
    Sport Sciences for Health, 2006, 1 (4) : 153 - 157
  • [4] Tissue-Engineered Cellular Neotendinous Constructs for Chronic Hernia Repair in a Rat
    Mahalingam, Vasu
    VanDusen, Keith
    Myers, Angela
    Trzcinski, Brett
    Arruda, Ellen
    Larkin, Lisa
    Kuzon, William
    FASEB JOURNAL, 2014, 28 (01):
  • [5] Repair of osteochondral defect with tissue-engineered chondral plug in a rabbit model
    Ito, Y
    Ochi, M
    Adachi, N
    Sugawara, K
    Yanada, S
    Ikada, Y
    Ronakorn, P
    ARTHROSCOPY-THE JOURNAL OF ARTHROSCOPIC AND RELATED SURGERY, 2005, 21 (10): : 1155 - 1163
  • [6] BONE DEFECT REPAIR WITH TISSUE-ENGINEERED CARTILAGE
    KIM, WS
    VACANTI, CA
    UPTON, J
    VACANTI, JP
    PLASTIC AND RECONSTRUCTIVE SURGERY, 1994, 94 (05) : 580 - 584
  • [7] DEVELOPMENT OF A TISSUE-ENGINEERED CONSTRUCT FOR BONE REPAIR
    Sadasivan, S.
    Shaw, G.
    Murphy, M.
    Barry, F.
    OSTEOARTHRITIS AND CARTILAGE, 2015, 23 : A414 - A414
  • [8] Tissue-Engineered Cardiac Constructs for Cardiac Repair
    Miyagawa, Shigeru
    Roth, Matthias
    Saito, Atsuhiro
    Sawa, Yoshiki
    Kostin, Sawa
    ANNALS OF THORACIC SURGERY, 2011, 91 (01): : 320 - 329
  • [9] A tissue-engineered conduit for peripheral nerve repair
    Hadlock, T
    Elisseeff, J
    Langer, R
    Vacanti, J
    Cheney, M
    ARCHIVES OF OTOLARYNGOLOGY-HEAD & NECK SURGERY, 1998, 124 (10) : 1081 - 1086
  • [10] Review: Vitreous Cryopreservation of Tissue-engineered Compositions for Tissue Repair
    Wang, Zhi
    Qin, Ting-Wu
    JOURNAL OF MEDICAL AND BIOLOGICAL ENGINEERING, 2013, 33 (02) : 125 - 131