Thermochemistry of Barium Hollandites

被引:30
|
作者
Costa, Gustavo C. C. [1 ,2 ]
Xu, Hongwu [3 ]
Navrotsky, Alexandra [1 ,2 ]
机构
[1] Univ Calif Davis, Peter A Rock Thermochem Lab, Davis, CA 95616 USA
[2] Univ Calif Davis, NEAT ORU, Davis, CA 95616 USA
[3] Los Alamos Natl Lab, Earth & Environm Sci Div, Los Alamos, NM 87545 USA
关键词
EFFECTIVE IONIC-RADII; STRUCTURAL-ANALYSIS; SOLID-SOLUTION; THERMODYNAMICS; TEMPERATURE; CHEMISTRY; CESIUM; PHASE; IMMOBILIZATION; DIFFRACTION;
D O I
10.1111/jace.12224
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Barium hollandites, a family of framework titanates that can potentially be used for the immobilization of short-lived fission products (especially 137Cs) in radioactive wastes, have been investigated by high-temperature oxide melt solution calorimetry using 2PbO center dot B2O3 solvent at 702 degrees C. The enthalpies of formation from constituent oxides show increasing energetic stability of the hollandite phase as Ti4+ is substituted by Mg2+, Al3+, and Fe3+, in that order. In general, the thermodynamic stability increases with decreasing average cation radius in the sites, and when the tolerance factor approaches one. The Al- and Fe-hollandites are more stable than phase assemblages containing BaTiO3 perovskite and Al/Fe/Ti oxides, whereas Mg-hollandite is less stable than the corresponding assemblage of BaTiO3 perovskite, MgTiO3 ilmenite, and TiO2. This instability makes Mg-hollandite a less suitable host for fission products. Hollandite phase formation during metal citrate combustion synthesis depends more on thermodynamic stability and phase chemistry than on the annealing temperature.
引用
收藏
页码:1554 / 1561
页数:8
相关论文
共 50 条
  • [1] Thermochemistry of barium hollandites
    Navrotsky, A. (anavrotsky@ucdavis.edu), 1600, Blackwell Publishing Inc., Postfach 10 11 61, 69451 Weinheim, Boschstrabe 12, 69469 Weinheim, Deutschland, 69469, Germany (96):
  • [2] Synthesis, characterization and thermochemistry of Cs-, Rb- and Sr-substituted barium aluminium titanate hollandites
    Xu, H.
    Wu, L.
    Zhu, J.
    Navrotsky, A.
    JOURNAL OF NUCLEAR MATERIALS, 2015, 459 : 70 - 76
  • [3] A STRUCTURAL-ANALYSIS OF BARIUM MAGNESIUM HOLLANDITES
    CHEARY, RW
    SQUADRITO, R
    ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL SCIENCE, 1989, 45 : 205 - 212
  • [4] STRUCTURAL-ANALYSIS OF SUBSTITUTED BARIUM HOLLANDITES
    CHEARY, RW
    KWIATKOWSKA, J
    HODGE, J
    ACTA CRYSTALLOGRAPHICA SECTION A, 1984, 40 : C235 - C235
  • [5] The effect of Cs on the structural properties of barium titanate hollandites
    Whittle, KR
    Lumpkin, GR
    Ashbrook, SE
    SCIENTIFIC BASIS FOR NUCLEAR WASTE MANAGEMENT XXVIII, 2004, 824 : 243 - 248
  • [6] THERMOCHEMISTRY OF BARIUM STYPHNATE
    PAYNE, JR
    THERMOCHIMICA ACTA, 1994, 242 : 1 - 6
  • [7] The effect of Cs on the structural and hydrothermal stability of barium hollandites
    Whittle, KR
    Lumpkin, GR
    Ashbrook, SE
    Cope, E
    Redfern, SAT
    GEOCHIMICA ET COSMOCHIMICA ACTA, 2004, 68 (11) : A110 - A110
  • [8] Thermochemistry of some barium compounds
    Monayenkova, AS
    Vorob'ev, AF
    Popova, AA
    Tiphlova, LA
    JOURNAL OF CHEMICAL THERMODYNAMICS, 2002, 34 (11): : 1777 - 1785
  • [9] Characteristics of the monoclinic-tetragonal transition and the order-disorder transition in barium hollandites
    Cheary, RW
    Thompson, R
    Watson, P
    EUROPEAN POWDER DIFFRACTION: EPDIC IV, PTS 1 AND 2, 1996, 228 : 777 - 782
  • [10] Barium polyphosphate glasses, from structure to thermochemistry
    Mrabet, Hounaida
    Cherbib, Mohamed Atef
    Khattech, Ismail
    MATERIALS CHEMISTRY AND PHYSICS, 2020, 239