ON SOME NONLOCAL EIGENVALUE PROBLEMS

被引:8
|
作者
Agarwal, Ravi P. [1 ]
Perera, Kanishka [2 ]
Zhang, Zhitao [3 ]
机构
[1] Texas A&M Univ, Dept Math, Kingsville, TX 78363 USA
[2] Florida Inst Technol, Dept Math Sci, Melbourne, FL 32901 USA
[3] Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
关键词
Nonlocal eigenvalue problems; minimax eigenvalues; Z(2)-cohomological index; nontrivial critical groups; nonlocal boundary value problems; multiplicity; Morse theory; EQUATION;
D O I
10.3934/dcdss.2012.5.707
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a class of nonlocal eigenvalue problems related to certain boundary value problems that arise in many application areas. We construct a nondecreasing and unbounded sequence of eigenvalues that yields nontrivial critical groups for the associated variational functional using a nonstandard minimax scheme that involves the Z(2)-cohomological index. As an application we prove a multiplicity result for a class of nonlocal boundary value problems using Morse theory.
引用
收藏
页码:707 / 714
页数:8
相关论文
共 50 条
  • [1] On the principal eigenvalue of some nonlocal diffusion problems
    Garcia-Melian, Jorge
    Rossi, Julio D.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 246 (01) : 21 - 38
  • [2] PRINCIPAL EIGENVALUES FOR SOME NONLOCAL EIGENVALUE PROBLEMS AND APPLICATIONS
    Yang, Fei-Ying
    Li, Wan-Tong
    Sun, Jian-Wen
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2016, 36 (07) : 4027 - 4049
  • [3] Saturation phenomena for some classes of nonlinear nonlocal eigenvalue problems
    Della Pietra, Francesco
    Piscitelli, Gianpaolo
    RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2020, 31 (01) : 131 - 150
  • [4] Some global results for a class of homogeneous nonlocal eigenvalue problems
    Dai, Guowei
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2019, 21 (03)
  • [5] The Hadamard formula for nonlocal eigenvalue problems
    Benguria, Rafael D.
    Pereira, Marcone C.
    Saez, Mariel
    MATHEMATISCHE ANNALEN, 2024, 389 (02) : 1225 - 1253
  • [6] NONLOCAL EIGENVALUE PROBLEMS WITH INDEFINITE WEIGHT
    Taarabti, Said
    METHODS OF FUNCTIONAL ANALYSIS AND TOPOLOGY, 2020, 26 (03): : 283 - 294
  • [8] The Hadamard formula for nonlocal eigenvalue problems
    Rafael D. Benguria
    Marcone C. Pereira
    Mariel Sáez
    Mathematische Annalen, 2024, 389 : 1225 - 1253
  • [9] NONLOCAL EIGENVALUE PROBLEMS IN VARIABLE EXPONENT SOBOLEV SPACES
    Benouhiba, Nawel
    JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS, 2015,
  • [10] UNIQUENESS OF THE PRINCIPAL EIGENVALUE IN NONLOCAL BOUNDARY VALUE PROBLEMS
    Webb, J. R. L.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2008, 1 (01): : 177 - 186