Multiple Parameter Estimation With Quantized Channel Output

被引:88
作者
Mezghani, Amine [1 ]
Antreich, Felix [2 ]
Nossek, Josef A. [1 ]
机构
[1] Tech Univ Munich, Inst Circuit Theory & Signal Proc, D-80290 Munich, Germany
[2] German Aerosp Ctr DLR, Inst Commun & Nav, D-82234 Wessling, Germany
来源
2010 INTERNATIONAL ITG WORKSHOP ON SMART ANTENNAS (WSA 2010) | 2010年
关键词
Quantization; MIMO channel estimation; TOA/DOA estimation; EM algorithm; Cramer-Rao Bound; stochastic resonance;
D O I
10.1109/WSA.2010.5456454
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present a general problem formulation for optimal parameter estimation based on quantized observations, with application to antenna array communication and processing (channel estimation, time-of-arrival (TOA) and direction-ofarrival (DOA) estimation). The work is of interest in the case when low resolution A/D-converters (ADCs) have to be used to enable higher sampling rate and to simplify the hardware. An Expectation-Maximization (EM) based algorithm is proposed for solving this problem in a general setting. Besides, we derive the Cramer-Rao Bound (CRB) and discuss the effects of quantization and the optimal choice of the ADC characteristic. Numerical and analytical analysis reveals that reliable estimation may still be possible even when the quantization is very coarse.
引用
收藏
页码:143 / 150
页数:8
相关论文
共 11 条
[1]  
Antreich F., 2009, P INT ITG IEEE WORKS
[2]  
Boyd S., 2004, CONVEX OPTIMIZATION, VFirst, DOI DOI 10.1017/CBO9780511804441
[3]  
Curry R. E., 1970, Estimation and control with quantized measurements
[4]  
IVRLAC MT, 2007, P ITG IEEE WSA VIENN
[5]   Channel estimation with quantized observations [J].
Lok, TM ;
Wei, VKW .
1998 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY - PROCEEDINGS, 1998, :333-333
[6]  
MEZGHANI A, 2007, IEEE INT S INF THEOR
[7]  
Mezghani A., 2009, IEEE INT S INF THEOR
[8]  
Papoulis A., 2002, Probability, Random Variables and Stochastic Processes
[9]  
Proakis J.G., 1995, Digital Communications
[10]  
Schreier R., 2004, UNDERSTANDING DELTA