Physiological emotion analysis using support vector regression

被引:35
|
作者
Chang, Chuan-Yu [1 ]
Chang, Chuan-Wang [2 ]
Zheng, Jun-Ying [1 ]
Chung, Pau-Choo [3 ]
机构
[1] Natl Yunlin Univ Sci & Technol, Dept Comp Sci & Informat Engn, Yunlin, Taiwan
[2] Far East Univ, Dept Comp Sci & Informat Engn, Tainan, Taiwan
[3] Natl Cheng Kung Univ, Dept Elect Engn, Tainan 70101, Taiwan
关键词
Emotion recognition; Emotion induction experiment; Physiological signal; Support vector regression; Emotion trend curve; RECOGNITION SYSTEM; USER;
D O I
10.1016/j.neucom.2013.02.041
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Physical and mental diseases were deeply affected by stress and negative emotions. In general, emotions can be roughly recognized by facial expressions. Since facial expressions may be controlled and expressed differently by different people subjectively, inaccurate are very likely to happen. It is hard to control physiological responses and the corresponding signals while emotions are excited. Hence, an emotion recognition method that considers physiological signals is proposed in this paper. We designed a specific emotion induction experiment to collect five physiological signals of subjects including electrocardiogram, galvanic skin responses (GSR), blood volume pulse, and pulse. We use support vector regression (SVR) to train the trend curves of three emotions (sadness, fear, and pleasure). Experimental results show that the proposed method achieves high recognition rate up to 89.2%. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:79 / 87
页数:9
相关论文
共 50 条
  • [1] Based on Support Vector Regression for Emotion Recognition using Physiological Signals
    Chang, Chuan-Yu
    Zheng, Jun-Ying
    Wang, Chi-Jane
    2010 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS IJCNN 2010, 2010,
  • [2] Emotion Recognition from Physiological Signals Using Support Vector Machine
    Cheng, Bo
    SOFTWARE ENGINEERING AND KNOWLEDGE ENGINEERING: THEORY AND PRACTICE, VOL 1, 2012, 114 : 49 - 52
  • [3] A consumer emotion analysis system based on support vector regression model
    Huo, Mingkui
    Li, Jing
    PEERJ COMPUTER SCIENCE, 2023, 9
  • [4] Liver fat analysis using optimized support vector machine with support vector regression
    Pushpa, B.
    Baskaran, B.
    Vivekanandan, S.
    Gokul, P.
    TECHNOLOGY AND HEALTH CARE, 2023, 31 (03) : 867 - 886
  • [5] Global sensitivity analysis using support vector regression
    Cheng, Kai
    Lu, Zhenzhou
    Zhou, Yicheng
    Shi, Yan
    Wei, Yuhao
    APPLIED MATHEMATICAL MODELLING, 2017, 49 : 587 - 598
  • [6] Interval regression analysis using support vector networks
    Hao, Pei-Yi
    FUZZY SETS AND SYSTEMS, 2009, 160 (17) : 2466 - 2485
  • [7] Interval regression analysis using support vector machine and quantile regression
    Hwang, CH
    Hong, DH
    Na, E
    Park, H
    Shim, J
    FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY, PT 1, PROCEEDINGS, 2005, 3613 : 100 - 109
  • [8] Blood Glucose Level Prediction using Physiological Models and Support Vector Regression
    Bunescu, Razvan
    Struble, Nigel
    Marling, Cindy
    Shubrook, Jay
    Schwartz, Frank
    2013 12TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA 2013), VOL 1, 2013, : 135 - 140
  • [9] Dual possibilistic regression analysis using support vector networks
    Hao, Pei-Yi
    FUZZY SETS AND SYSTEMS, 2020, 387 (387) : 1 - 34
  • [10] ANALYSIS OF VIDEO-MOVIES USING SUPPORT VECTOR REGRESSION
    Gonzalez, S.
    Vega, J.
    Murari, A.
    FUSION SCIENCE AND TECHNOLOGY, 2010, 58 (03) : 763 - 770