Microwave absorption properties of 50% SrFe12O19-50% TiO2 nanocomposites with porosity

被引:24
|
作者
Dadfar, M. R. [1 ]
Ebrahimi, S. A. Seyyed [1 ]
Dadfar, M. [2 ]
机构
[1] Univ Tehran, Sch Met & Mat Engn, Ctr Excellence Magnet Mat, Tehran, Iran
[2] Isfahan Univ Technol, MSc Mat Engn, Esfahan, Iran
关键词
SrFe12O19-TiO2; Porosity; Nanocomposite; Magnetic property; Microwave absorption; SOL-GEL METHOD; COMPOSITE-MATERIAL; TITANIUM-DIOXIDE; MAGNETIC CORE; PHOTOCATALYST; NANOPARTICLES; FERRITES; CARBON; OXIDE; PHOTODISSOLUTION;
D O I
10.1016/j.jmmm.2012.07.046
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
SrFe12O19-TiO2 nanocomposites are usually used for absorbing microwaves in military and civil applications. In this work, microwave absorption properties of porous SrFe12O19 nanocomposites with 50% weight ratio of TiO2 have been investigated. 50% TiO2-50% SrFe12O19 nanocomposites were prepared by a controlled hydrolysis of titanium tetraisopropoxide in which SrFe12O19 nanoparticles were synthesized by a sol-gel auto combustion route. The morphology, crystalline structure and crystallite size of SrFe12O19-TiO2 nanocomposites were characterized by field emission scanning electron microscopy and X-ray powder diffraction. The magnetic measurements were carried out with a vibrating sample magnetometer. The microwave absorption was measured by a Vector Network Analyzer. The microwave absorption results indicated that the reflection losses for specimens with 52%-56% porosity and thicknesses of 1.8, 2.1 and 2.6 mm were not very low but minimum reflection loss for a specimen with 4.2 mm thickness reached up to -33 dB. (c) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:4204 / 4208
页数:5
相关论文
共 50 条
  • [1] Magnetic and microwave absorption properties of Fe-50wt%Ni particles coated by SrFe12O19
    Zhu, S. J.
    Huang, K.
    Feng, S. J.
    Liu, X. S.
    Kan, X. C.
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2023, 34 (04)
  • [2] Magnetic and microwave absorption properties of Fe–50wt%Ni particles coated by SrFe12O19
    S. J. Zhu
    K. Huang
    S. J. Feng
    X. S. Liu
    X. C. Kan
    Journal of Materials Science: Materials in Electronics, 2023, 34
  • [3] Sol–Gel Synthesis and Characterization of SrFe12O19/TiO2 Nanocomposites
    M. R. Dadfar
    S. A. Seyyed Ebrahimi
    S. M. Masoudpanah
    Journal of Superconductivity and Novel Magnetism, 2015, 28 : 89 - 94
  • [4] Microwave absorption properties of polypyrrole-SrFe12O19-TiO2-epoxy resin nanocomposites: Optimization using response surface methodology
    Dorraji, M. S. Seyed
    Rasoulifard, M. H.
    Amani-Ghadim, A. R.
    Khodabandeloo, M. H.
    Felekari, M.
    Khoshrou, M. R.
    Hajimiri, I.
    APPLIED SURFACE SCIENCE, 2016, 383 : 9 - 18
  • [5] Sol-Gel Synthesis and Characterization of SrFe12O19/TiO2 Nanocomposites
    Dadfar, M. R.
    Ebrahimi, S. A. Seyyed
    Masoudpanah, S. M.
    JOURNAL OF SUPERCONDUCTIVITY AND NOVEL MAGNETISM, 2015, 28 (01) : 89 - 94
  • [6] Thickness optimization towards microwave absorption enhancement in three-layer absorber based on SrFe12O19, SiO2@SrFe12O19 and MWCNTs@SrFe12O19 nanocomposites
    Zhu, Xiaolei
    Wang, Xiaoping
    Liu, Kuili
    Yuan, Honglei
    Boudaghi, Reza
    Akhtar, Majid Niaz
    JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 873
  • [7] Comparison of microwave absorption properties of SrFe12O19, SrFe12O19/NiFe2O4, and NiFe2O4 particles
    Mehdipour, M.
    Shokrollahi, H.
    JOURNAL OF APPLIED PHYSICS, 2013, 114 (04)
  • [8] Microwave absorption properties of substituted BaFe12O19/TiO2 nanocomposite multilayer film
    Qiu, Jianxun
    Wang, Yi
    Gu, Mingyuan
    JOURNAL OF MATERIALS SCIENCE, 2007, 42 (01) : 166 - 169
  • [9] Microwave absorption properties of substituted BaFe12O19/TiO2 nanocomposite multilayer film
    Jianxun Qiu
    Yi Wang
    Mingyuan Gu
    Journal of Materials Science, 2007, 42 : 166 - 169
  • [10] Microwave absorption properties of SrFe12O19/ZnFe2O4 composite powders
    Chen, Na
    Mu, Guohong
    Pan, Xifeng
    Gan, Keke
    Gu, Mingyuan
    MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 2007, 139 (2-3): : 256 - 260