Taxonomy of detection algorithms for hyperspectral imaging applications

被引:63
|
作者
Manolakis, D [1 ]
机构
[1] MIT, Lincoln Lab, Lexington, MA 02420 USA
关键词
target detection; hyperspectral imaging; spectral matching algorithms;
D O I
10.1117/1.1930927
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A unified, simplified, and concise overview of spectral target detection algorithms for hyperspectral imaging applications is presented. We focus on detection algorithms derived using established statistical techniques and whose performance is predictable under reasonable assumptions about hyperspectral imaging data. The emphasis on a signal processing perspective enables us to better understand the strengths and limitations of each algorithm, avoid unrealistic performance expectations, and apply an algorithm properly and sensibly. (c) 2005 Society of Photo-Optical Instrumentation Engineers.
引用
收藏
页码:1 / 11
页数:11
相关论文
共 50 条
  • [1] Detection algorithms for hyperspectral Imaging applications
    Manolakis, D
    Shaw, G
    IEEE SIGNAL PROCESSING MAGAZINE, 2002, 19 (01) : 29 - 43
  • [2] A taxonomy of algorithms for chemical vapor detection with hyperspectral imaging spectroscopy
    Manolakis, D
    D'Amico, FM
    Chemical and Biological Sensing VI, 2005, 5795 : 125 - 133
  • [3] Detection algorithms for hyperspectral imaging applications: A signal processing perspective
    Manolakis, D
    2003 IEEE WORKSHOP ON ADVANCES IN TECHNIQUES FOR ANALYSIS OF REMOTELY SENSED DATA, 2004, : 378 - 384
  • [4] Detection Algorithms in Hyperspectral Imaging Systems
    Manolakis, Dimitris
    Truslow, Eric
    Pieper, Michael
    Cooley, Thomas
    Brueggeman, Michael
    IEEE SIGNAL PROCESSING MAGAZINE, 2014, 31 (01) : 24 - 33
  • [5] Hyperspectral imaging and target detection algorithms: a review
    Sneha
    Kaul, Ajay
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (30) : 44141 - 44206
  • [6] Hyperspectral imaging and target detection algorithms: a review
    Ajay Sneha
    Multimedia Tools and Applications, 2022, 81 : 44141 - 44206
  • [7] Optimizing Machine Learning Algorithms for Hyperspectral Imaging and Trace Detection
    Kendziora, Andrew
    Breshike, Christopher J.
    Furstenberg, Robert
    Huffman, Tyler
    Kendziora, Christopher A.
    ALGORITHMS, TECHNOLOGIES, AND APPLICATIONS FOR MULTISPECTRAL AND HYPERSPECTRAL IMAGING XXX, 2024, 13031
  • [8] Applications of hyperspectral imaging in the detection and diagnosis of solid tumors
    Zhang, Yating
    Wu, Xiaoqian
    He, Li
    Meng, Chan
    Du, Shunda
    Bao, Jie
    Zheng, Yongchang
    TRANSLATIONAL CANCER RESEARCH, 2020, 9 (02) : 1265 - 1277
  • [9] Lesion Detection in Magnetic Resonance Brain Images by Hyperspectral Imaging Algorithms
    Xue, Bai
    Wang, Lin
    Li, Hsiao-Chi
    Chen, Hsian Min
    Chang, Chein-I
    REMOTELY SENSED DATA COMPRESSION, COMMUNICATIONS, AND PROCESSING XII, 2016, 9874
  • [10] Detection of Bruise on Pear by Hyperspectral Imaging Sensor with Different Classification Algorithms
    Zhao, Jiewen
    Ouyang, Qin
    Chen, Quansheng
    Wang, Jianhei
    SENSOR LETTERS, 2010, 8 (04) : 570 - 576