Morrey-Sobolev Spaces on Metric Measure Spaces

被引:13
|
作者
Lu, Yufeng [1 ]
Yang, Dachun [1 ]
Yuan, Wen [1 ,2 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Minist Educ, Beijing 100875, Peoples R China
[2] Univ Jena, Math Inst, D-07743 Jena, Germany
基金
高等学校博士学科点专项科研基金; 中国国家自然科学基金;
关键词
Sobolev space; Morrey space; Upper gradient; Hajlasz gradient; Metric measure space; Maximal operator; NEWTONIAN SPACES;
D O I
10.1007/s11118-013-9370-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, the authors introduce the Newton-Morrey-Sobolev space on a metric measure space (oe'(3), d, mu). The embedding of the Newton-Morrey-Sobolev space into the Holder space is obtained if oe'(3) supports a weak Poincar, inequality and the measure mu is doubling and satisfies a lower bounded condition. Moreover, in the Ahlfors Q-regular case, a Rellich-Kondrachov type embedding theorem is also obtained. Using the Hajasz gradient, the authors also introduce the Hajasz-Morrey-Sobolev spaces, and prove that the Newton-Morrey-Sobolev space coincides with the Hajasz-Morrey-Sobolev space when mu is doubling and oe'(3) supports a weak Poincar, inequality. In particular, on the Euclidean space , the authors obtain the coincidence among the Newton-Morrey-Sobolev space, the Hajasz-Morrey-Sobolev space and the classical Morrey-Sobolev space. Finally, when (oe'(3), d) is geometrically doubling and mu a non-negative Radon measure, the boundedness of some modified (fractional) maximal operators on modified Morrey spaces is presented; as an application, when mu is doubling and satisfies some measure decay property, the authors further obtain the boundedness of some (fractional) maximal operators on Morrey spaces, Newton-Morrey-Sobolev spaces and Hajasz-Morrey-Sobolev spaces.
引用
收藏
页码:215 / 243
页数:29
相关论文
共 50 条
  • [1] Morrey-Sobolev Spaces on Metric Measure Spaces
    Yufeng Lu
    Dachun Yang
    Wen Yuan
    Potential Analysis, 2014, 41 : 215 - 243
  • [2] Uhlenbeck's Decomposition in Sobolev and Morrey-Sobolev Spaces
    Goldstein, Pawel
    Zatorska-Goldstein, Anna
    RESULTS IN MATHEMATICS, 2018, 73 (02)
  • [3] Fractional Hajlasz-Morrey-Sobolev spaces on quasi-metric measure spaces
    Yuan, Wen
    Lu, Yufeng
    Yang, Dachun
    STUDIA MATHEMATICA, 2015, 226 (02) : 95 - 122
  • [4] Morrey Spaces for Nonhomogeneous Metric Measure Spaces
    Cao Yonghui
    Zhou Jiang
    ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [5] Interpolation of Morrey Spaces on Metric Measure Spaces
    Lu, Yufeng
    Yang, Dachun
    Yuan, Wen
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2014, 57 (03): : 598 - 608
  • [6] On some subspaces of Morrey-Sobolev spaces and boundedness of Riesz integrals
    Dosso, Mouhamadou
    Fofana, Ibrahim
    Sanogo, Moumine
    ANNALES POLONICI MATHEMATICI, 2013, 108 (02) : 133 - 153
  • [7] SOBOLEV'S INEQUALITY FOR MUSIELAK-ORLICZ-MORREY SPACES OVER METRIC MEASURE SPACES
    OHNO, T. A. K. A. O.
    SHIMOMURA, T. E. T. S. U.
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2021, 110 (03) : 371 - 385
  • [8] Grand Sobolev Spaces on Metric Measure Spaces
    Pavlov, S., V
    SIBERIAN MATHEMATICAL JOURNAL, 2022, 63 (05) : 956 - 966
  • [9] Weighted Sobolev spaces on metric measure spaces
    Ambrosio, Luigi
    Pinamonti, Andrea
    Speight, Gareth
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2019, 746 : 39 - 65
  • [10] Grand Sobolev Spaces on Metric Measure Spaces
    S. V. Pavlov
    Siberian Mathematical Journal, 2022, 63 : 956 - 966