Wavelet regression and additive models for irregularly spaced data

被引:0
|
作者
Haris, Asad [1 ]
Simon, Noah [1 ]
Shojaie, Ali [1 ]
机构
[1] Univ Washington, Dept Biostat, Seattle, WA 98195 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
ORTHONORMAL BASES; SHRINKAGE;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a novel approach for nonparametric regression using wavelet basis functions. Our proposal, waveMesh, can be applied to non-equispaced data with sample size not necessarily a power of 2. We develop an efficient proximal gradient descent algorithm for computing the estimator and establish adaptive minimax convergence rates. The main appeal of our approach is that it naturally extends to additive and sparse additive models for a potentially large number of covariates. We prove minimax optimal convergence rates under a weak compatibility condition for sparse additive models. The compatibility condition holds when we have a small number of covariates. Additionally, we establish convergence rates for when the condition is not met. We complement our theoretical results with empirical studies comparing waveMesh to existing methods.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Interpolation methods for nonlinear wavelet regression with irregularly spaced design
    Hall, P
    Turlach, BA
    ANNALS OF STATISTICS, 1997, 25 (05): : 1912 - 1925
  • [2] Simultaneous Least Squares Wavelet Decomposition for Multidimensional Irregularly Spaced Data
    Shahbazian, Mehdi
    Shahbazian, Saeed
    MEASUREMENT TECHNOLOGY AND ITS APPLICATION, PTS 1 AND 2, 2013, 239-240 : 1213 - +
  • [3] GARCH and irregularly spaced data
    Meddahi, N
    Renault, E
    Werker, B
    ECONOMICS LETTERS, 2006, 90 (02) : 200 - 204
  • [4] INTERACTION MODELS FOR IRREGULARLY SPACED POPULATIONS
    ORD, JK
    BIOMETRICS, 1972, 28 (04) : 1178 - 1178
  • [5] On the Nadaraya-Watson kernel regression estimator for irregularly spaced spatial data
    El Machkouri, Mohamed
    Fan, Xiequan
    Reding, Lucas
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2020, 205 : 92 - 114
  • [6] Estimating time-series models from irregularly spaced data
    Broersen, Piet M. T.
    Bos, Robert
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2006, 55 (04) : 1124 - 1131
  • [7] Wavelet threshold estimation for additive regression models
    Zhang, SL
    Wong, MY
    ANNALS OF STATISTICS, 2003, 31 (01): : 152 - 173
  • [8] Second-generation wavelet denoising methods for irregularly spaced data in two dimensions
    Delouille, Veronique
    Jansen, Maarten
    von Sachs, Rainer
    SIGNAL PROCESSING, 2006, 86 (07) : 1435 - 1450
  • [9] Multiscale representation for irregularly spaced data
    Jang, Dongik
    Kim, Donghoh
    Kim, Kyungmee O.
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2017, 46 (04) : 641 - 653
  • [10] AUTOMATIC CONTOURING OF IRREGULARLY SPACED DATA
    PELTO, CR
    ELKINS, TA
    BOYD, HA
    GEOPHYSICS, 1968, 33 (03) : 424 - &