The smallest singular value of a shifted d-regular random square matrix

被引:11
|
作者
Litvak, Alexander E. [1 ]
Lytova, Anna [2 ]
Tikhomirov, Konstantin [3 ]
Tomczak-Jaegermann, Nicole [1 ]
Youssef, Pierre [4 ]
机构
[1] Univ Alberta, Dept Math & Stat Sci, Edmonton, AB T6G 2G1, Canada
[2] Univ Opole, Fac Math Phys & Comp Sci, 48,Oleska Str, PL-45052 Opole, Poland
[3] Princeton Univ, Dept Math, Fine Hall,Washington Rd, Princeton, NJ 08544 USA
[4] Univ Paris Diderot, Lab Probabilites Stat & Modelisat, F-75013 Paris, France
关键词
Adjacency matrices; Anti-concentration; Condition number; Invertibility; Littlewood-Offord theory; Random graphs; Random matrices; Regular graphs; Singular probability; Singularity; Sparse matrices; Smallest singular value;
D O I
10.1007/s00440-018-0852-y
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We derive a lower bound on the smallest singular value of a random d-regular matrix, that is, the adjacency matrix of a random d-regular directed graph. Specifically, let C1<d<cn/log2n and let Mn,d be the set of all nxn square matrices with 0/1 entries, such that each row and each column of every matrix in Mn,d has exactly d ones. Let M be a random matrix uniformly distributed on Mn,d. Then the smallest singular value sn(M) of M is greater than n-6 with probability at least 1-C2log2d/ where c, C1, and C2 are absolute positive constants independent of any other parameters. Analogous estimates are obtained for matrices of the form M-zId, where Id is the identity matrix and z is a fixed complex number.
引用
收藏
页码:1301 / 1347
页数:47
相关论文
共 50 条
  • [1] The smallest singular value of a shifted d-regular random square matrix
    Alexander E. Litvak
    Anna Lytova
    Konstantin Tikhomirov
    Nicole Tomczak-Jaegermann
    Pierre Youssef
    Probability Theory and Related Fields, 2019, 173 : 1301 - 1347
  • [2] The Smallest Singular Value of a Shifted Random Matrix
    Dong, Xiaoyu
    JOURNAL OF THEORETICAL PROBABILITY, 2023, 36 (04) : 2448 - 2475
  • [3] The Smallest Singular Value of a Shifted Random Matrix
    Xiaoyu Dong
    Journal of Theoretical Probability, 2023, 36 : 2448 - 2475
  • [4] An upper bound on the smallest singular value of a square random matrix
    Tatarko, Kateryna
    JOURNAL OF COMPLEXITY, 2018, 48 : 119 - 128
  • [5] The Smallest Singular Value of Dense Random Regular Digraphs
    Jain, Vishesh
    Sah, Ashwin
    Sawhney, Mehtaab
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2022, 2022 (24) : 19300 - 19334
  • [6] Smallest Singular Value of a Random Rectangular Matrix
    Rudelson, Mark
    Vershynin, Roman
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2009, 62 (12) : 1707 - 1739
  • [7] THE SMALLEST SINGULAR VALUE OF INHOMOGENEOUS SQUARE RANDOM MATRICES
    Livshyts, Galyna, V
    Tikhomirov, Konstantin
    Vershynin, Roman
    ANNALS OF PROBABILITY, 2021, 49 (03): : 1286 - 1309
  • [8] Bounding the Smallest Singular Value of a Random Matrix Without Concentration
    Koltchinskii, Vladimir
    Mendelson, Shahar
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (23) : 12991 - 13008
  • [9] On the chromatic number of random d-regular graphs
    Kemkes, Graeme
    Perez-Gimenez, Xavier
    Wormald, Nicholas
    ADVANCES IN MATHEMATICS, 2010, 223 (01) : 300 - 328
  • [10] Cleaning Random d-Regular Graphs with Brooms
    Pralat, Pawel
    GRAPHS AND COMBINATORICS, 2011, 27 (04) : 567 - 584