Topological properties of strict (LF)-spaces and strong duals of Montel strict (LF)-spaces

被引:5
|
作者
Gabriyelyan, Saak [1 ]
机构
[1] Ben Gurion Univ Negev, Dept Math, Beer Sheva, Israel
来源
MONATSHEFTE FUR MATHEMATIK | 2019年 / 189卷 / 01期
关键词
Strict (LF)-space; Montel space; Ascoli property; Sequential space; Frechet-Urysohn space;
D O I
10.1007/s00605-018-1223-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Following Banakh and Gabriyelyan (Monatshefte Math 180:39-64, 2016), a Tychonoff space X is Ascoli if every compact subset of Ck(X) is equicontinuous. By the classical Ascoli theorem every k-space is Ascoli. We show that a strict (LF)-space E is Ascoli iff E is a Frechet space or E=phi. We prove that the strong dual E of a Montel strict (LF)-space E is an Ascoli space iff one of the following assertions holds: (i) E is a Frechet-Montel space, so E is a sequential non-Frechet-Urysohn space, or (ii) E=phi. Consequently, the space D() of test functions and the space of distributions D() are not Ascoli that strengthens results of Shirai (Proc Jpn Acad 35:31-36, 1959) and Dudley (Proc Am Math Soc 27:531-534, 1971), respectively.
引用
收藏
页码:91 / 99
页数:9
相关论文
共 50 条