Decomposition of complete bipartite graphs into generalized prisms

被引:4
|
作者
Cichacz, Sylwia [1 ]
Froncek, Dalibor [2 ]
Kovar, Petr [3 ]
机构
[1] AGH Univ Sci & Technol, Fac Appl Math, PL-30059 Krakow, Poland
[2] Univ Minnesota, Dept Math & Stat, Duluth, MN 55812 USA
[3] VSB Tech Univ Ostrava, Dept Appl Math, Ostrava, Czech Republic
关键词
D O I
10.1016/j.ejc.2012.07.018
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
R. Haggkvist proved that every 3-regular bipartite graph of order 2n with no component isomorphic to the Heawood graph decomposes the complete bipartite graph K-6n,K-6n. In (Cichacz and Froncek, 2009) [2] the first two authors established a necessary and sufficient condition for the existence of a factorization of the complete bipartite graph K-n,K-n into certain families of 3-regular graphs of order 2n. In this paper we tackle the problem of decompositions of K-n,K-n into certain 3-regular graphs called generalized prisms. We will show that certain families of 3-regular graphs of order 2n decompose the complete bipartite graph K-3n/2.3n/2 (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:104 / 110
页数:7
相关论文
共 50 条