ON A1- AND A2-SUBGROUPS OF FINITE p-GROUPS

被引:3
|
作者
Berkovich, Yakov [1 ]
Zhang, Qinhai [2 ]
机构
[1] Univ Haifa Mt Carmel, Dept Math, IL-31905 Haifa, Israel
[2] Shanxi Normal Univ, Dept Math, Linfen 041004, Shanxi, Peoples R China
关键词
Metacyclic p-groups; minimal nonabelian p-groups; A(2)-groups;
D O I
10.1142/S0219498813500953
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The isomorphism types of all minimal nonabelian subgroups (- A(1-)subgroups) of A(2)-groups are described. This allows us to classify the nonabelian p-groups, p > 2, that have no p isomorphic A(1)-subgroups of minimal order. In particular, if a p-group G is neither abelian nor A(1)-group and all its A(1)-subgroups are pairwise non-isomorphic, then either G congruent to SD16, the semidihedral group of order 16, or G is a metacyclic 2-group of order >= 2(5). We also show that if a p-group G is neither abelian nor minimal nonabelian, then G is metacyclic if and only if all its A(2)-subgroups are metacyclic.
引用
收藏
页数:26
相关论文
共 50 条
  • [1] Finite p-groups all of whose A2-subgroups are generated by two elements
    Zhang, Lihua
    Zhang, Junqiang
    JOURNAL OF GROUP THEORY, 2021, 24 (01) : 177 - 193
  • [2] On subgroups of finite p-groups
    Berkovich, Yakov
    Janko, Zvonimir
    ISRAEL JOURNAL OF MATHEMATICS, 2009, 171 (01) : 29 - 49
  • [3] On subgroups of finite p-groups
    Yakov Berkovich
    Zvonimir Janko
    Israel Journal of Mathematics, 2009, 171 : 29 - 49
  • [4] On subgroups of finite p-groups
    Berkovich, Y
    JOURNAL OF ALGEBRA, 2000, 224 (02) : 198 - 240
  • [5] ON FINITE p-GROUPS WITH SUBGROUPS OF BREADTH 1
    Cutolo, Giovanni
    Smith, Howard
    Wiegold, James
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2010, 82 (01) : 84 - 98
  • [6] The intersection of subgroups of finite p-groups
    Qinhai Zhang
    Junjun Wei
    Archiv der Mathematik, 2011, 96 : 9 - 17
  • [7] ISOMORPHIC SUBGROUPS OF FINITE P-GROUPS .1.
    GLAUBERMAN, G
    CANADIAN JOURNAL OF MATHEMATICS, 1971, 23 (06): : 983 - +
  • [8] FINITE P-GROUPS WITH ISOMORPHIC SUBGROUPS
    CURRANO, JJ
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 18 (02): : 403 - &
  • [9] FRATTINI SUBGROUPS OF FINITE P-GROUPS
    LANGE, GL
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (01): : A90 - A90
  • [10] FINITE P-GROUPS WITH ISOMORPHIC SUBGROUPS
    CURRANO, JJ
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1973, 25 (01): : 1 - 13