Let sigma ={sigma(i)vertical bar i is an element of l} 1/4 friji 2 Ig be a partition of the set of all primes P and G a finite group. G is said to be sigma-soluble if every chief factor H/K of G is sigma-primary (that is, H/K is a sigma(i)-group for some i = i(H/K)). A subgroup A of G is called sigma-subnormal in G if there is a subgroup chain A = A(0) <= A(1) <= ... <= A(n) = G such that either A(i-1) <= A(i) or A(i)/(A(i-1))(Ai) is sigma-primary for all i = 1, ...,n. Denote by i(sigma)(G) the number of classes of iso-ordic non-sigma-subnormal sub-groups of G. In this note, we study the structure of G depending on the invariant i(sigma)(G). In particular, the following criterion is proved. Theorem 1.2. If i(sigma)(G) <= 2 vertical bar sigma(G)vertical bar, then G is sigma-soluble.
机构:
Hainan Univ, Sch Math & Stat, Haikou 570228, Hainan, Peoples R ChinaHainan Univ, Sch Math & Stat, Haikou 570228, Hainan, Peoples R China
Liu, A-Ming
Wang, Sizhe
论文数: 0引用数: 0
h-index: 0
机构:
Hainan Univ, Sch Math & Stat, Haikou 570228, Hainan, Peoples R China
Tianjin Univ, Sch Math, Tianjin 300072, Peoples R ChinaHainan Univ, Sch Math & Stat, Haikou 570228, Hainan, Peoples R China
Wang, Sizhe
Safonov, Vasily G.
论文数: 0引用数: 0
h-index: 0
机构:
Natl Acad Sci Belarus, Inst Math, Minsk 220072, BELARUS
Belarusian State Univ, Dept Mech & Math, Minsk 220030, BELARUSHainan Univ, Sch Math & Stat, Haikou 570228, Hainan, Peoples R China
Safonov, Vasily G.
Skiba, Alexander N.
论文数: 0引用数: 0
h-index: 0
机构:
Natl Acad Sci Belarus, Inst Math, Minsk 220072, BELARUS
Francisk Skorina Gomel State Univ, Dept Math & Technol Programming, Gomel 246019, BELARUSHainan Univ, Sch Math & Stat, Haikou 570228, Hainan, Peoples R China
机构:
Univ Salerno, Dipartimento Matemat, Via Giovanni Paolo II 132, I-84084 Fisciano, SA, ItalyUniv Brasilia, Dept Matemat, BR-70910900 Brasilia, DF, Brazil
机构:
School of Mathematics, University of Bristol, Bristol,BS8 1UG, United KingdomSchool of Mathematics, University of Bristol, Bristol,BS8 1UG, United Kingdom
Burness, Timothy C.
Lucchini, Andrea
论文数: 0引用数: 0
h-index: 0
机构:
Università di Padova, Dipartimento di Matematica Tullio Levi-Civita, Via Trieste 63, Padova,35121, ItalySchool of Mathematics, University of Bristol, Bristol,BS8 1UG, United Kingdom
Lucchini, Andrea
Nemmi, Daniele
论文数: 0引用数: 0
h-index: 0
机构:
Università di Padova, Dipartimento di Matematica Tullio Levi-Civita, Via Trieste 63, Padova,35121, ItalySchool of Mathematics, University of Bristol, Bristol,BS8 1UG, United Kingdom