The visual system is sensitive to orientation information defined both by first-order (luminance) and by second-order (texture) cues. We consider how these orientation cues are computed and how they affect one another. We measured the perceived orientation of the first and second-order components of Gabor patches (the carrier and envelope. respectively) and report a dependence of the perceived orientation of each on the orientation of the other, and on the spatial frequency of the carrier. Fixing the carrier orientation near that of the envelope interferes with envelope orientation judgements. This interference is reduced by adding a small (subthreshold) rotation to the carrier indicating that the site of interference is early. When the gross relative orientation of carrier and envelope is varied, the carrier appears systematically tilted towards the envelope. However, provided envelope and carrier are separated by more than approximately 10 degrees, the perceived envelope orientation appears tilted away from the carrier. The size of these effects increases with decreasing carrier spatial frequency, and with increasing exposure duration. When the envelope and carrier are both non parallel and non-perpendicular Fourier energy is distributed asymmetrically across orientation. We demonstrate that, for a channel-based orientation code, this asymmetry induces a shift in mean orientation that is sufficient to explain illusory tilting of carriers. The illusory tilting of the envelope, as a function of carrier orientation and spatial frequency, demonstrates that human ability to demodulate contrast information is far from ideal and cannot be explained by existing two-stage filter-rectify-filter models. We propose that illusory tilting of the envelope is due to selective connectivity between first- and second-stage filters whose purpose is to dissociate the type of image structure producing each class of cue. (C) 1999 Elsevier Science Ltd. All rights reserved.