Solid-Solution Semiconductor Nanowires in Pseudobinary Systems

被引:36
|
作者
Liu, Baodan [1 ,2 ,3 ]
Bando, Yoshio [1 ]
Liu, Lizhao [3 ]
Zhao, Jijun [3 ]
Masanori, Mitome [1 ]
Jiang, Xin [2 ]
Golberg, Dmitri [1 ]
机构
[1] Natl Inst Mat Sci, World Premier Int WPI Ctr Mat Nanoarchitecton MAN, Tsukuba, Ibaraki 3050044, Japan
[2] Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang 110016, Peoples R China
[3] Ion & Electron Beams Dalian Univ Technol, Key Lab Mat Modificat Laser, Minist Educ, Dalian 116024, Peoples R China
基金
中国国家自然科学基金;
关键词
Pseudobinary system; solid-solution nanowires; synthesis; lattice matching; structure homology; HETEROSTRUCTURES; GROWTH; ZNS; PHOTOCATALYSIS;
D O I
10.1021/nl303501t
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Pseudobinary solid-solution semiconductor nanowires made of (GaP)(1-x)(ZnS)(x), (ZnS)(1-x)(GaP)(x) and (GaN)(1-x)(ZnO)(x) were synthesized based on an elaborative compositional, structural, and synthetic designs. Using analytical high-resolution transmission electron microscopy (HRTEM) and energy dispersive X-ray spectroscopy (EDS), we confirmed that the structure uniformity and a lattice match between the two constituting binary components play the key roles in the formation of quaternary solid-solution nanostructures. Electrical transport measurements on individual GaP and (GaP)(1-x)(ZnS)(x) nanowires indicated that a slight invasion of ZnS in the GaP host could lead to the abrupt resistance increase, resulting in the semiconductor-to-insulator transition. The method proposed here may be extended to the rational synthesis of many other multicomponent nanosystems with tunable and intriguing optoelectronic properties for specific applications.
引用
收藏
页码:85 / 90
页数:6
相关论文
共 50 条
  • [1] Pseudobinary Solid-Solution: An Alternative Way for the Bandgap Engineering of Semiconductor Nanowires in the Case of GaP-ZnSe
    Yang, Wenjin
    Liu, Baodan
    Yang, Bing
    Wang, Jianyu
    Sekiguchi, Takashi
    Thorsten, Staedler
    Jiang, Xin
    ADVANCED FUNCTIONAL MATERIALS, 2015, 25 (17) : 2543 - 2551
  • [2] MULTICOMPONENT SOLID-SOLUTION SEMICONDUCTOR-LASERS
    DOLGINOV, LM
    DRUZHININA, LV
    ELISEEV, PG
    KRYUKOVA, IV
    LESKOVICH, VI
    MILVIDSKII, MG
    SVERDLOV, BN
    SHEVCHENKO, EG
    IEEE JOURNAL OF QUANTUM ELECTRONICS, 1977, 13 (08) : 609 - 611
  • [3] SOLID-SOLUTION SOFTENING AND SOLID-SOLUTION HARDENING
    SATO, A
    MESHII, M
    ACTA METALLURGICA, 1973, 21 (06): : 753 - 768
  • [4] A SOLID-SOLUTION MODEL FOR INHOMOGENEOUS SYSTEMS
    HILLERT, M
    ACTA METALLURGICA, 1961, 9 (06): : 525 - 535
  • [5] Semiconductor Solid-Solution Nanostructures: Synthesis, Property Tailoring, and Applications
    Liu, Baodan
    Li, Jing
    Yang, Wenjin
    Zhang, Xinglai
    Jiang, Xin
    Bando, Yoshio
    SMALL, 2017, 13 (45)
  • [6] SOLID-SOLUTION
    STOPPI, J
    NEW SCIENTIST, 1994, 141 (1911) : 51 - 51
  • [7] FERROELECTRIC MORPHOTROPIC REGIONS IN THE SOLID-SOLUTION SYSTEMS
    KUPRIYANOV, M
    KONSTANTINOV, G
    PANICH, A
    FERROELECTRICS, 1992, 127 (1-4) : 77 - 82
  • [8] Solution-liquid-solid growth of semiconductor nanowires
    Wang, Fudong
    Dong, Angang
    Sun, Jianwei
    Tang, Rui
    Yu, Heng
    Buhro, William E.
    INORGANIC CHEMISTRY, 2006, 45 (19) : 7511 - 7521
  • [9] MODELING SOLID-SOLUTION REACTIONS IN AQUEOUS SYSTEMS
    GLYNN, PD
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1988, 196 : 14 - GEOC
  • [10] PYROXENE STABILITY AND SOLID-SOLUTION IN BASALTIC SYSTEMS
    LONGHI, J
    RAWSON, SA
    TRANSACTIONS-AMERICAN GEOPHYSICAL UNION, 1978, 59 (12): : 1217 - 1217