Modulation of Atmospheric Rivers by the Arctic Stratospheric Polar Vortex

被引:13
|
作者
Lee, Simon H. [1 ]
Polvani, Lorenzo M. [1 ,2 ,3 ]
Guan, Bin [4 ,5 ]
机构
[1] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA
[2] Columbia Univ, Dept Earth & Environm Sci, New York, NY 10027 USA
[3] Columbia Univ, Lamont Doherty Earth Observ, Palisades, NY USA
[4] CALTECH, Jet Prop Lab, Pasadena, CA USA
[5] Univ Calif Los Angeles, Joint Inst Reg Earth Syst Sci & Engn, Los Angeles, CA USA
基金
美国国家科学基金会;
关键词
subseasonal; precipitation; atmospheric rivers; stratosphere-troposphere coupling; strong vortex; sudden stratospheric warming; EXTREME PRECIPITATION; NORTH-AMERICA; WEATHER; ALGORITHM; DYNAMICS; BLOCKING; PACIFIC; IMPACTS; EVENTS;
D O I
10.1029/2022GL100381
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Variability in atmospheric river (AR) frequency can drive hydrometeorological extremes with broad societal impacts. Mitigating the impacts of increased or decreased AR frequency requires forewarning weeks to months ahead. A key driver of Northern Hemisphere wintertime mid-latitude subseasonal-to-seasonal climate variability is the stratospheric polar vortex. Here, we quantify AR frequency, landfall, genesis, and termination depending on the strength of the lower stratospheric polar vortex. We find large differences between weak and strong vortex states consistent with a latitudinal shift of the eddy-driven jet, with the greatest differences over the British Isles, Scandinavia, and Iberia. Significant differences are also found for the Pacific Northwest of North America. Most of the seasonal-scale stratospheric modulation of precipitation over Europe is explained by modulation of ARs. Our results provide potentially useful statistics for extended-range prediction, and highlight the importance of ARs in bringing about the precipitation response to anomalous vortex states.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Defining Arctic Stratospheric Polar Vortex Intensification Events
    Huang, Jinlong
    Hitchcock, Peter
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2023, 128 (22)
  • [2] Link between Arctic ozone and the stratospheric polar vortex
    Dingzhu Hu
    Simin Shi
    Zhe Wang
    Atmospheric and Oceanic Science Letters, 2023, 16 (01) : 49 - 54
  • [3] The Impact of the Stratospheric Polar Vortex Shift on the Arctic Oscillation
    Lu, Yongjia
    Tian, Wenshou
    Zhang, Jiankai
    Huang, Jinlong
    Zhang, Ruhua
    Wang, Tao
    Xu, Mian
    JOURNAL OF CLIMATE, 2021, 34 (10) : 4129 - 4143
  • [4] Preconditioning of Arctic Stratospheric Polar Vortex Shift Events
    Huang, Jinlong
    Tian, Wenshou
    Gray, Lesley J.
    Zhang, Jiankai
    Li, Yan
    Luo, Jiali
    Tian, Hongying
    JOURNAL OF CLIMATE, 2018, 31 (14) : 5417 - 5436
  • [5] Impact of Arctic Stratospheric Polar Vortex on Mediterranean Precipitation
    Zhang, Chongyang
    Zhang, Jiankai
    Xia, Xufan
    Li, Douwang
    JOURNAL OF CLIMATE, 2024, 37 (17) : 4403 - 4419
  • [6] The 2018-2019 Arctic stratospheric polar vortex
    Lee, Simon H.
    Butler, Amy H.
    WEATHER, 2020, 75 (02) : 52 - 57
  • [7] Stratospheric water vapour in the vicinity of the Arctic polar vortex
    Maturilli, M.
    Fierli, F.
    Yushkov, V.
    Lukyanov, A.
    Khaykin, S.
    Hauchecorne, A.
    ANNALES GEOPHYSICAE, 2006, 24 (06) : 1511 - 1521
  • [8] Link between Arctic ozone and the stratospheric polar vortex
    Hu, Dingzhu
    Shi, Simin
    Wang, Zhe
    ATMOSPHERIC AND OCEANIC SCIENCE LETTERS, 2023, 16 (01)
  • [9] Measurements of large stratospheric particles in the Arctic polar vortex
    Brooks, SD
    Baumgardner, D
    Gandrud, B
    Dye, JE
    Northway, MJ
    Fahey, DW
    Bui, TP
    Toon, OB
    Tolbert, MA
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2003, 108 (D20)
  • [10] STRATOSPHERIC METEOROLOGICAL CONDITIONS IN THE ARCTIC POLAR VORTEX, 1991 TO 1992
    NEWMAN, P
    LAIT, LR
    SCHOEBERL, M
    NASH, ER
    KELLY, K
    FAHEY, DW
    NAGATANI, R
    TOOHEY, D
    AVALLONE, L
    ANDERSON, J
    SCIENCE, 1993, 261 (5125) : 1143 - 1146